Republic of Sudan

<27

<27

Ministry of High Education
and Scientific Research

Shendi University
College of Graduate Studies

Infinite-Dimensional Groups and Borel Structures
with Subalgebras of Ultraproduct

(B ol iiall 43 el il puad) aa J g ey g ) Auilg N a3

A Thesis Submitted in Fulfillment of the Requirement for the
Degree of M.Sc. in Mathematics

By:
Wijdan Mohammed Khalfa

Supervisor:

Prof. Shawgy Hussein Abdalla

2018



Dedication

To my Family.



Acknowledgements

| would like to thank with all sincerity Allah, to my family for their supports
throughout my studying. Many thanks are due to my thesis guide, Professor.
Shawgy Hussein Abdalla of Sudan University of Science & Technology.



Abstract

We show the imprimitivity and induced representations of locally compact
groups I. We study the Kadec norms and Borel sets in Banach spaces and function
spaces with the weak topology. We investigate the problem of Kadison on
maximal abelian and injective subalgebras in factors associated with free-groups.
We obtain quasi-regular and induced representations of the infinite-dimensional
nilpotent groups. We discuss problems concerning Borel structures in function
spaces and in the Banach spaces with Baire measurability in spaces of continuous
functions. We give the independence properties in subalgebras of ultraproduct II,
factors and factors of type I1; without non-trivial finite index subfactors.



-

AadAll

Sl il Ly ] Lmcagal (alill el Daadly Agladl e claall laaaf
Alae Ly ol Adall Laglplll ae aA) Cleliad b 5 UL Cleliab b J)e il
Bl ey ae AGLE Jalsall 8 FolaY) Edall clpally cabedl LLY) e (pnalS
Saall 2y shiall dua gl danacall (gaall cld yall Fasally dalsind) 4nd Dl e lloaas
Clelinby A Clelind 8 Jysr leliyy Aaitall Jloal) (iamy W28l . yailly aedl=3le3Y
Gl & i) o pailadll lubael Lgyaiuall Jlgall clelind 8 jul Qe aae &l
2 el Jal Al daleall Gen Il gl dalses Iy dalsad (85l milill d5])
|



Introduction

We shall discuss a generalization of this notion which is more suitable for
use in connection with infinite dimensional representation because it allows the
direct sum decomposition to be continuous as well as discrete.

This connection between representations of groups and representation of
their subgroups has many interesting and useful properties in the finite case and it
naturally occurs to on to study the extent to which these properties persist in
general. We introduce a property for a couple of topologies that allows us to give
simple proofs of some classic results about Borel sets in Banach spaces by Edgar,
Schacbermayer and Talagrand as well as some new results. It is show that the
duality map(-): (£*,weak) x ((£*)*,weak™) — R is not Borel. More generally,
the evaluation e: (C(K),weak) X K = R,e(f,X) = f(x), is not Borel for any
function space C(K) on a compact F-space.

We show that under certain conditions Kadison's problem has an affirmative
answer. We also show by a counter example that the hypothesis of separability is
essential a von Neuman algebra A acting on a Hilbert space H is called injective.
A von Neuman algebra A acting on a Hilbert space H is called injective if there
exists a norm one projection from the Banach algebra of all linear bounded
operators on H onto A. As the injective von Neumann algebras form a monotone
class, any von Neumann algebra has maximal injective von Neumann subalgebras.

In the present work an analog of the quasiregular representation which is
well known for locally-compact groups is constructed for the nilpotent infinite-
dimensional group BY' and a criterion for its irreducibility is presented. The

induced representation In dgs of a locally compact group G is the unitary

representation of the group G associated with unitary representation S : H — U(V)
of a subgroup H of the group G. To develop the concept of in- duced
representations for infinite-dimensional groups. The induced representations for
infinite-dimensional groups in not unique, as in the case of a locally compact
groups.

It is an open problem if any separable compact space K whose function
space C(K) with thecylindrical c-algebra is a standard measurable space, embeds in
the space of the first Baire class functions on the Cantor set, with the pointwise
topology. We prove that this is true for separable linearly orderedcompacta.

Let C(K) be the Banach space of all continuous functions on a given compact
space K. We investigate the w*-sequential closure in C(K)*of the set ofall finitely
supported probabilities on K. M. Talagrand showed that, for the “Cech-Stone



compactification g of the space of natural numbers o , the norm and the weak
topology generate different Borel structures in the Banach space C (o).

We call a sub factor N < M trivial if it is isomorphic with the obvious
inclusion of N in M, (C) ® N. We prove the existence of type II; factors M
without non-trivial finite index sub factors. Equivalently, every M-M-bimodule
with finite coupling constant, both as a left and as a right M-module, is a multiple
of L2 (M). We show that if Q ¢ M is either an ultraproduct Q =11,Q,, of
subalgebras Q,, ¢ M,, with Q,, <« M,, Q',, n M,,Vn , or the centralizer Q = B'n M
of aseparable amenable *-subalgebra B ¢ M then for any separable subspace X c
M © (B’ n M) , there exists a diffuse abelian von Neumann subalgebra in Q which
is free independent to X , relativeto Q' N M .
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Chapter 1
Locally Compact Groups

We study the imprimitivity and representations of the locally compact groupsland
ergodicity and transitivity. We show ad determine the induced representations of locally
compact groups 1.

Section (1.1): Imprimitivity for Representations

In the classical theory of representations of finite groups by linear transformations a
representation s - U, of a finite group is said to be imprimitive if the vector space H in
which the U, act is a direct sum of independent subspaces M, M,, ..., M,, in such a manner
that each U transforms each M; into some M;. In the present note we shall discuss a
generalization of this notion which is more suitable for use in connection with infinite
dimensional representation because it allows the direct sum decomposition to be continuous
as well as discrete. Our principal theorem (well known for finite groups) deals with weakly
(and hence strongly) continuous unitary representations of separable locally compact groups.
It asserts that the pair consisting of such a representation and a "transitive system of
imprimitivity" for it defines an essentially unique subgroup G, and an essentially unique
representation L of G, from which the original pair may be reconstructed in a quite explicit
manner.

This result has a number of applications. A recent theorem [2] which implies the
Stone-von Neumann theorem on the uniqueness of operators satisfying the Heisenberg
commutation relations is included as a special case. In addition it may be used to give a
complete determination of the irreducible unitary representations of the members of a class of
locally compact groups which are neither compact nor Abelian.

Definition (1.1.1)[1]: Lets —» U; —M,, M,,..., M,,, Be an imprimitive representation in the
classical sense. Suppose that the U, are unitary and that the M; are mutually orthogonal. Let
M denote the set of integers 1, 2, ...,n. For each s in the group G and each j € M let (j)s be
the index of the subspace into which U_, carries M;. Let P; denote the projection of H on M;.

Then it is easy to see that UP; Us' = P¢jys—1. More generally if Pg is defined by the
equation Py = Y,(jep) Py foreach E € M then UsPg Ug' = P g)s-1. The motivation for the

following definition should now be clear. Let M be a separable locally compact space and let
G be a separable locally compact group. Let x,s — (x)s denote a mapping of M X G onto M
which is continuous and is such that (a) for fixed s,x — (x)sis a homeomorphism and (b)
the resulting map of G into the group of homeomorphisms of M is a homomorphism.

Let P(E — Pg) be a o homomorphism of the o Boolean algebra of all Borel subsets
of M into a o- Boolean algebra of projections in a separable Hilbert space H such thatP,,is the
identity 1. Let U(s — Us) be a representation of G in H; that is a weakly (and hence
strongly) continuous homomorphism of G into the group of unitary operators in H. If
UsPLUSY = P gs-1 for all E and s and if Py takes on values other than 0 and | we shall say

that U is imprimitive and that P is a system of imprimitivity for U. We shall call 1l the base of
P. It is to be observed that P defines in Ma family of null sets and that there exists in M a
family of mutually equivalent measures whose sets of measure zero are precisely these null
sets.



The null sets are those sets E for which P, = 0 and the measures are those of the form

u(E) = (Pgf,f) where f is an element [3] in H such that Py f = 0 implies Py = 0.

Ergodicity and Transitivity.-When for each x and y in M there exists s in G for which
(x)s = yitis natural to say that P is a transitive system of imprimitivity for U. When M is
finite every system of imprimitivity decomposes in a natural manner into transitive ones
corresponding to the orbits of M under G. The decomposition of M into orbits is not reflected
in a corresponding decomposition of H. It is rather the decomposition of M into ergodic or
metrically transitive parts which is relevant. We define a system of imprimitivity P to be
ergodic if G acts ergodically on the base M of P; that is, whenever (E)s differs from E by a
null set for all s € G then E is itself a null set or the complement of one. In view of the
current literature on the decomposition of measures the study of general systems of
Imprimitivity may be expected to be reducible to the study of ergodic systems.

Ergodic systems which are not also transitive are rather difficult to handle and such
results as we have at present are far from definitive. We deal exclusively with transitive
systems. Fortunately in some applications it can be shown that only transitive systems can
arise. Specifically let us say that the orbits of M under G are regular if there exists a countable
family E;, E,, ... of Borel subsets of M, each a union of orbits such that each orbit of M is the
intersection of the members of a sub-family E,,,, E,,,, .... Then the following theorem is easily
showd.

Theorem (1.1.2)[1]: If the orbits of M under G are regular then for each ergodic system of
imprimitivity based on M there is an orbit C such that P,_. = 0.

Formulation of the Principal Theorem.-Let P be a transitive system of imprimitivity
for the representation U of the separable locally compact group G. Let x, be a point of the
base M of P. Let G, be the set of all s € G for which (x,)s = x,. Then G, is a closed
subgroup of G and the mapping s — (x,)s of G on M defines a one-to-one Borel set
preserving map of the homogeneous space G /G, of rightG,cosets onto M. Thus P is
equivalent in an obvious sense to another system of imprimitivity for U whose base is the
homogeneous space G/G,. In general we shall define a pair to be a unitary representation for
the group G together with a particular system of imprimitivity for this representation. If U, P
and U', P" are two pairs with the same base M we shall say that they are unitary equivalent if
there exists a unitary transformation V from the space of U and P to the space of U’ and P’
such that V-1UV = U, and V-1PLV = P for all s and E. It follows from the above
remarks that the problem of determining to within unitary equivalence all pairs based on a
given M may always be reduced to the corresponding problem in which M is a homogeneous
space. We shall accordingly confine ourselves to this case. The arbitrariness in the choice of
X has the effect only of providing us with several essentially equivalent complete systems of
invariants for the pairs based on a given M.

We describe a method (which will show to be general) of constructing pairs based on a
given G/G,. Let, u be a finite Borel measure on G /G, which is "quasi invariant” in the sense
that the action of G on G/Gpreserves null sets.[4] Let L(¢ — L) be a representation of G,
by unitary operators in a Hilbert space H,. Then let H;, be the set of all functions f from G to
H, such that: (a) f is a Borel function in the sense that (f(s), v) is a Borel function of s for
allv € Hy;



(b) for all s € G and all € « Gy, f(§s) = Lgf(s); and (c) (f(s), f(s)) (which by (b) is
constant on the right G, cosets) defines a summable function on G/G, . By a more or less
obvious adaptation of the proof of the Riesz Fischer [6] it may be shown that H is a Hilbert

space with respect to the inner product (f, g), = fG/G (f(s),g(s))du, and the obvious linear

operations. Naturally functions which are equal almost everywhere are to be identified. Now
let P be the function on G X G /G, which for each fixed s is the Radon Nikodym derivative
of the translate of p by s with respect to u itself. Then regarding p , as we may, as a function
on G X G let Usf for all s € G and f € H, be defined by the equation (Usf) (t) =

f(ts)//p(s™,ts). It is readily verified that Us, is a unitary transformation of H; onto itself
and that the mapping s = U is a representation of G. For each Borel subset E of G /
Go let @ be its characteristic function regarded as a function on G . For f €
H; let (Pgf) (t) = @(t)f(t). Itis easy to see that the mapping f — Pz f is a projection and
that U and P together constitute a pair in the sense of the above definition. We shall call it the
pair generated by andu . We can now formulate our main theorem.
Theorem (1.1.3)[1]: Let G be a separable locally compact group and let G, be a closed
subgroup of G. Let U’, P’ be any pair based on G / G,. Let u be any quasi invariant measure
in G / G,.. Then there exists a representation L of G, such that U’, P’ is unitary equivalent to
the pair generated by L and A. If L and L' are representations of G, and, u and u’ are quasi
invariant measures in G / G,.then the pair generated by L' and i’ is unitary equivalent to the
pair generated by L and, u if and only if L and L’ are unitary equivalent representations of G,.
Proof. We shall give the proof in outline only leaving relatively routine details to the reader.
Moreover we shall assume familiarity on the part of the reader with the section cited in [2]
and will omit arguments similar to those given there. We shall refer to this section as SVN.
The proof falls naturally into two parts. First we show that every pair defines a representation
of G, unique to within unitary equivalence and that two pairs defining equivalent
representations of G, are unitary equivalent. Then we complete the proof by showing that the
representation of G, defined by the pair generated by an arbitrary L and u is unitary
equivalent to L itself.

Given a pair U’, P’ based on G / G,. we note first that the set of all P, is a uniformly n
dimensional Boolean algebra of projections (n = 1,2,-:-, ) in the sense of Nakano (see
SVN 5). This follows from the fairly easily showd fact that G acting on G / G, is ergodic. Let
N denote an n dimensional identity representation of G, let u be a quasi invariant measure in
G / Gy.and let W,P be the pair generated by N and IA. Just as in No. 6 of SVN it is possible
to show that the pair U’, P’ is unitary equivalent to the pair U,P where P comes from the pair
W,P above and U is a suitable representation of G. We define Q, as U,W, ! and observe that
QsP; = PgQ, for all E and s. It follows as in SVN that there exists a weakly Borel function
Q~ from Gx to the group of unitary operators in the space H,in which the N, act such that
for each s in G we have (Q;f)(t) = Q7 (s, t)f(t) . The identity Q~(s;s,,t) =
Q~ (s1,t)Q~ (s,,tsy) holding for almost all triples is established as in SVN and from it the
existence of a weakly Borel function B such that Q~(s,t) = B~1(¢t)B(ts) almost
everywhere. The fact that the functions in Hy are constant on the right G, cosets implies that
Q7 (s,ét) = Q (s, t) for all £ € G, almost everywhere in s and t. This implies in turn that
B~1(&ét)B(éts) = B71(t)B(ts) in the same sense or equivalently that B(éts)B~1(ts) =
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B(ét)B~1(t). In short for each & € G,, B(§t)B~1(t) is almost everywhere equal to a certain
constant operator Lg . A simple argument shows that (L;vo,v;) is of the form
fGl/J(t) (B(ét)v,,v,) for a dense set of v,'s. Here vy, v, and v, are elements in H; and yis a
continuous complex valued function vanishing outside of a compact subset of G. It follows
readily that (Lgvo,vy,) is continuous in & and, since Lgygs, = Lgy Lgp, that L(E — Lg)is a
representation of G,. Of course L may depend upon the choice of u, the choice of the unitary
map of the given Hilbert space on Hy and the choice of B. However, the fact that any two
p's have the same null sets guarantees the lack of dependence of L On u. As to the other
possible dependencies note that a unitary map X 0f Hy on itself which commutes with all Pg
Is defined by an equation of the form Xf(t) = X(t)f(t) where X(t) is a unitary operator
on H, for each t and X (t) is a weakly Borel function of t. Moreover X(ét) = X(t) for¢ €
G,. It is readily calculated that the effect on Q of a transformation by X is to replace it by R
where R(s,t) = X 1()Q(s,t)X(ts). Now if C7I()C(ts) = X 1()B~I(t)B(ts)X(ts) it
follows that B(t)X(t)C~1(t) is (modulo null sets) independent of t. Thus for some constant
operator K we have C(t) = KB(t)X(t) SO that CEHC™1(t) =
KBEHOX(EHX 1 (t)B~'(t)K™' = KL K. In short our original pair and in fact the unitary
equivalence class to which it belongs determine L to within unitary equivalence.

Conversely a simple reversal of the argument shows that pairs leading to unitary equivalent
L's must be themselves unitary equivalent.

Now let L' be an arbitrary representation of G, and let U’, P’ be the pair generated by L'
and a quasi invariant measure u in G/G,. By the argument of the preceding paragraph there is
a unitary map V1 of H,, on some Hy such that V"1P.,V = P, where W, P is as before the
pair generated by N and u and N is an identity representation of G, on a Hilbert space H,. It
is not difficult to show that there exists a weakly Borel function IV~ defined on G whose
values are operators from H; to the space H, in which L' operates such that (Vf)(t) =
V=(t)f(t). It follows from the fact that V is unitary that V™~ (t) is unitary from H; int0 H,
for almost all t and it follows from the fact that Vf € H,, that for each& € G, V™ (ét) =
LV~ (t) for almost all ¢. Now the Qg of the preceding paragraph here take the form
VIUVW, 1 so that U/VW,l = VQ,. Hence V™~ (ts) = V™ (£)Q~(s,t) Or V™~ (ts) =
V> ()B Y (t)B(ts) or V™ (ts)B~1(ts) = V~(t) — B~1(¢).

Thus there exists a norm preserving operator K independent of ¢ such that V= (t) =
KB(t) for almost all t. If K were known to map H, onto the whole of H, we could write
B(t) = K7'v~(t) and conclude at once that B(ét)B™'(t) = K Ly V> (t)V~ —
1'(t)K = K~'L¢K and hence that the L fOr U’, P’ is unitary equivalent to L'. In order to
show that K is indeed an onto mapping we must make use of certain facts about the space H,:
which so far as we know at this point might be zero dimensional. For each continuous
function w from G t0 H, which vanishes outside of a compact subset of G let w be defined by
the equation (w(t),v) = fGO (Lg-1w(&t), v)dt€ for all v in Hy and all ¢ in G. This function

may be shown to be a continuous member of H,» which vanishes outside of a set whose
Image in GIG, is compact. Arguments of a fairly routine nature show that for each t e G the
vectors w (t) span H,. Now suppose that K does not map H, Ont0 H,. Choose v, orthogonal



to the range of K. Consider an arbitrary member of H;, of the form w. We have w(t) =
V=(t)f(t) for some fand almost all t. But V= (¢t) f(t) is in the range of K for almost all t.
Thus, since w is continuous we can conclude that (w (t),v,) = 0 for all t. Hence for
all t, (w(t),v,) = 0 forall w and this contradicts the fact that the w(t) span for each t.
The natural question concerning the connection between the reducibility of a pair U, P
and the reducibility of the defining representation of G, is easily answered. If T commutes
with all L then a transformation T~ taking Hy into Hy is defined by the equation

(T~f) (t) = B Y(t)TB(t)f(t) where B is the function used in defining L. Then, as is easily
seen T — T~ is a* —isomorphism of the ring of all bounded linear operators which commute
with all the L; onto the ring of all bounded linear operators which commute with all the Us
and all of the Pg. In particular the U and the P are simultaneously reducible if and only if L
Is a reducible representation of G,,.

Application to the Determination of Group Representations.-Let G be a separable
locally compact group and let G, be a closed normal Abelian subgroup of G. Let G, denote
the character group of G,. Every member s of G defines an automorphism x — sxs™1 0f G,
and this in turn induces an automorphismy — (y)s 0f G;. Now let U be any irreducible
representation of G. Restricted to G, it admits a spectral resolution defined by a a
homomorphism P of the Borel subsets of G,, into a Boolean algebra of projections in the
Hilbert space H in which U acts. An obvious calculation shows that UsP;Us ! = Pgys—1-
Thus P is a system of imprimitivity for U. Since U is irreducible P must be ergodic. If we
assume that G, is "regularly imbedded" in G in the sense that the orbits in G, under G are
regular then Theorem (1.1.2) tells us that G; may be replaced by a single orbit. Let y be a
point in this orbit and let G, be.the closed subgroup of all s for which (y)s = y. Theorem
(1.1.3) tells us that U is unitary equivalent to the first member of the pair generated by an
irreducible representation of G,,.

If G is a "semi-direct product” of G; and GIG; that is, if there exists a closed subgroup
G,suchthat G;n G, = e and G;G, = G much more precise information is available.
Theorem (1.1.4)[1]: Let G, be imbedded regularly in G and let G be a semidirect product of
G, and G,. From each orbit C of G, under G, choose a member Yc. Let G, denote the set of
all s € G, with (yc)s = yc . Then the general irreducible representation of G may be
obtained as follows. Select an orbit C and an irreducible representation L of G.. Let M be the
irreducible representation of G, — G which coincides with L on G, and is y. times the
identity on G,. Then the first member of the pair generated by Mand a quasi invariant
measure in G /(G,. Gc) is the required irreducible representation of G.

Every irreducible representation of G may be so obtained and two such are unitary
equivalent if and only if they come from the same orbit and unitary equivalent L's.

When the irreducible representations of G, and its subgroups are known Theorem
(1.1.4) furnishes a complete description of the irreducible representations of G. This is so, in
particular, when G, is Abelian. Moreover when G, is Abelian (and G; is imbedded regularly
in G) it tells us that every

Irreducible representation of G is of "multiplier” form. More generally any imprimitive
representation of G generated by a one-dimensional representation of a subgroup is unitary
equivalent to a representation in which the underlying Hilbert space is the space of square
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summable functions on a homogeneous space and the action of the operator associated with s
Is to translate by s and multiply by a certain function (the multiplier) of s and a variable point
in the homogeneous space.

When G, is not imbedded regularly in G Theorem (1.1.4) fails only in that it does not describe
all of the irreducible representations. The ones that it does describe still exist and are
irreducible. We have examples, however, showing that in general there are many others.
Their existence leads to various kinds of pathological behavior which we expect to discuss at
another time. Since these "extra" representations are all infinite dimensional, Theorem(1.1.4)
provides an analysis of all finite dimensional representations for arbitrary semidirect
products.

A number of well-known groups are regular semidirect products and Theorem (1.1.4)
includes as special cases results in the literature analyzing their representations. Examples
include the unique non-commutative two-parameter Lie group [6] (a semidirect product of
two lines) and the group of Euclidean motions in two space [7] (a semidirect product of the
two-dimensional translation group and the circle group). Wigner's [7] reduction of the
representation problem for the inhomogeneous Lorentz group to that for the homogeneous
Lorentz group is also a consequence of Theorem (1.1.4) since the former group is a
semidirect product of a translation group and the latter group.

(i) In the mapping from a representation L of G, to the pair it generates one can ignore
P and obtain a mapping from representations of G, to representations of G. It is not difficult
to see that this mapping carries the regular representation of G, into the regular representation
of G. Thus (in view of No. 6) any analysis of the regular representation of G, as a direct sum
or integral will define a corresponding analysis of the regular representation of G although the
"parts” will not necessarily be irreducible. This decomposition when G, is Abelian is the
subject of a recent interesting note of G, dement [8]. It was this note of G, dement together
with a discussion of such a space for compact groups given by A. Weil [9] that suggested our
definition of the Hilbert space H, .

There are a number of questions suggested by the considerations, which we expect to
investigate and report. We close by mentioning a few of these. (i) When is the representation
U of G generated by an irreducible representation L of G, itself irreducible?

(i) When G is finite, L and U are finite dimensional and L is irreducible there is a classical
theorem which says that the number of times that U contains a given irreducible
representation V of G is equal to the number of times that the restriction of V to G, contains
L. Weil [9] has recently extended this theorem to compact groups. One can ask whether (and
in what sense) it continues to be .true for general locally compact groups.

(ili) To what extent is it true that an arbitrary irreducible representation of G is the
Imprimitive representation generated by a primitive representation L of an appropriate G,?
How is the possible failure of this to hold generally connected with the "extra"
representations of non-regular semidirect products? (iv) Theorem (1.1.3) presumably can be
used to show other theorems like Theorem (1.1.4). What are some of these? One notes in
particular that G; can probably be replaced by any group whose representations can be
decomposed into irreducible parts in a suitably manageable manner.



Section (1.2): Induced Representations

In the theory of representations of a finite group by linear transformations the closely
related notions of "imprimitivity" and of "induced representation” play a prominent role. [28]
has generalized these notions to the case in which the group is a Separable locally compact
topological group and the linear transformations are unitary transformations in Hilbert space.
It turns out (and this is the principle Theorem of [28]) that the classical Theorem of Frobenius
according to which every "imprimitive" representation of a finite group is "induced"” in a
certain canonical fashion by a representation of a subgroup may be reformulated so as to
remain true under the more general circumstances indicated above. This connection between
representations of groups and representations of their subgroups has many interesting and
useful properties in the finite case and it naturally occurs to one to study the extent to which
these properties persist in general.

The principal results, formulated as Theorems (1.2.34), (1.2.35) and (1.2.37) , are
closely related; each being essentially a Corollary of its predecessor. The first asserts that if L
is a representation of the closed subgroup G, of ® and U’ is the corresponding induced
representation of ® then the restriction of U~ to the closed subgroup G, is a "sum" over the
G.: G, double cosets of certain induced representations o G,.

The second gives a similar decomposition of the Kronecker product UL f@ UM where L and
M are representations of G; and G, respectively.

The third provides a usable formula for computing the "strong intertwining numbers"
of the induced representations UL and UM of ®. The "sums" in question are ordinary discrete
sums only when there are at most countably many non trivial double cosets.

In general "direct integrals” as defined by von Neumann in [36] must be used and we must
restrict ourselves to the case in which the relevant double coset decomposition of ® is
"measurable”.

As we have shown in detail else where [30] these Theorems for finite groups imply
certain classical results; in particular the Frobenius reciprocity Theorem and the shoda criteria
for the irreducibility and unitary equivalence of monomial representations. The Theorems
yield generalizations of these results but these generalizations may be regarded as satisfactory
only insofar as they deal with representations whose irreducible constituents are discrete and
finite dimensional.

We have made a start in [30] and hope to be able to discuss the situation more fully in
[19], [28].

Let € be a separable locally compact group and let G be a closed subgroup of €.
Let9tbe the homogeneous space of right G cosets and let h (x — h(x))denot the canonical
mapping of ® onto M. Ifz = h(x) e Wandy € € then h(xy) depends only upon y and
h(x).

We shall denote this element by [z]y. It is readily verified that z — [z]y IS a
homeomorphism, that [z]y;y, = [[z]y.]y, and that [z]y, is continuous in both variables
together. We shall be concerned with Borel measures ingJtwhose null sets are carried into null
sets by the homeomorphisms z — [z]y.

We shall need certain information about the connection between Borel sets in 9t and
Borel sets in €. This information is contained in the two lemmas below.



Lemma (1.2.1)[11]: There exists a Borel set B in € such that: (a) B intersects each right G
coset in exactly one point and (b) for each compact subset K of €, (h"1(h(K))) N B has a
compact closure.
Proof: Choose a compact neighborhood V of the identity e of € such thatV = V-1 If € is
connected then € =uU;_; V™ and every compact subset of € is in some V™. If € is not
connected then U;_; V™ is an open and closed subgroup with only countably many cosets.
In any case it is clear that there exists in € a countable family K; € k, € K ; of compact
subsets of (M such that every compact subset of € is contained in some K;. By a Theorem of
Federer and Morse [14] there exists for each j a Borel subset B; < K; such that h(B;) =
h(K;) and such that h is one-to-one on Bj. Moreover theB; may be chosen so that B;,; 2
B; forj = 1,2,. Indeed if By, B,, ..., B; have been chosen so that B; € B, <--- S B; we
may define B;,, as (Bj’+1 —ht (h(B;))) U B; where B]f+1 is any Borel subset ofk;,; on
which h is one-to-one and has range h(k;,,).
Since B; is a Borel set in a complete metric space and h is continuous and one-to-one on B; It
follows from a Theorem in Kuratowski's "Topologie™ [26] that h(B;) is a Borel set and hence
that B;,, is a Borel set. Clearly B = U;Z,B;has the required properties.
We shall call a Borel subset of ® with roperties (a) and (b) of the lemma a
regular Borel section of ® with respect to G.
Lemma (1.2.2)[11]: A necessary and sufficient condition that a subset E of Mt be a Borel set
is that h=1 (E) be a Borel set in €. A necessary and sufficient condition that a function
f onI be a Borel function is that f oh , where (foh) (x) = f(h(x)), be a Borel
functionon ® .
Proof: Let B be a regular Borel section of € with respect to G.If h™1 (E) is a B orel set
then h(h~1(E) N B) = E and is a Borel set by the Kuratowski Theorem referred To above.
All other statements of the lemma are obvious or are consequences of this one.
Let 4 be a Borel measure in 90t; that is a completely additive non negative and plus infinity
valued set function defined on all Borel subsets of 9t and finite on compact sets. Suppose that
u is not identically zero.
If for each Borel set E € Mt and each y €, €, u(E) is zero when and only when u([E]y) is
zero,we shall call u, a quasi invariant measure. It is easy to see that such measures exist [13].
Indeed let v be any finite, # 0 Borel measure in ® whose null sets are those of Haar
measure zero and let u (E) = v (h~1(E)) for each Borel set E € 9. Verification of the
quasi invariance of uis immediate. It is our purpose here to study the uniqueness of quasi
invariant measures and the analytical properties of the Radon-Nikodym derivatives of their
translates. Our results are summarized in Theorem(1.2.6) below. The proof of the Theorem
depends upon the three lemmas which follow.
Lemma(1.2.3)[11]: Let u be any quasi invariant measure in 0t. Then u(E) =0 if and only if
h~1(E) has Haar measure zero.
Proof: Let v denote a right invariant Haar measure in G.For each Borel function f from® to

the interval [0,1] let f'(x) = fo f(éx) dv(§).We note that f' is constant on the right G
cosets. Let 3 be the family of all functions f under consideration for which f” is also a Borel



function. It is immediate that 3 is closed under the taking f point wise limits and easily seen
that it contains all continuous functions with compact support.

Thus 3 contains all Borel functions. Let f" denote the unique Borel function on Mtsuch that
f'oh=f"and for each Borel set E € Mlet a(E) = [, 05 (z)du(z) where @ is the
characteristic function of E. Then «a is a Borel measure in ® anda(E) = 0 if and only if
@ (z) = 0 for u almost all z; that is if and only if [ @z (£x)dv(§) = 0 for ualmost all
h(x); that is if and only if v([E]3z* nG) = 0 for u almost all h(x). On the other hand for
each fixed y € H$we have a[E]y = 0 if and only if v([E]yx~1 N G) = 0 for palmost all
h(x).Butv([E]lyx'NG) = v([E]xy™H'NG) = glxy™Hif g(x) = v([E]x~ NG).

Since u is quasi invariant g(x) is zero for almost all h(x) if and only if this is the case
for g(xy™1).Thus « (E) = 0 if and only if a([E]y) =0. Thus a is quasi invariant and it
follows from [14] Lemma 3 of [27] that a has thesame null sets as Haar measure. Finally it
is an easy consequence of the definitions that « (h™1(E)) = u(E)v(G)where 0.c0 = 0. The
truth of the lemma follows at once.

Following Weil [42] but interchanging right and left let us write A(o) for the constant
Radon Nikody mderivative of the measure E — a (oE) with respect to the measure E - o(E)
where o is right invariant Haar measure in ®. Further let us write 6(o) for the similarly
defined constant Radon-Nikodym derivative in G. A and a are continuous homeomorphisms
of ®and G respectively into the group of positive real numbers.

Lemma (1.2.4)[11]: There exists a positive real valued Borel function p on ® which is
Bounded on compact sets and such that p(£x) = (6(€)/A(€)) p(x)forall x € Gand all £ €
G

Proof: Let B be a regular Borel section of ® with respect to G. For each z € It Let Y (z) be
the unique element of B such that h(y/(2)) = z.

By the Kura-towski Theorem referred to in the proof of Lemma (1.2.1), ¥ is a Borel
function so that i o his also a Borel function. Let ; = o h. Thenx — x(0,(x)) lis a
Borel function from & to G which we shall denote by 6,. We now define p(x) =
6(62(x))/A(82(x)).

We leave it to verify that p has the required properties; remarking only that the
boundedness of p on compact sets follows from property (b) of regular Borel sections.

We shall call a function with the properties listed in Lemma(1.2.4) a p-function. If p is

any p-function on Gthen p(xy)/p(x) is a Borel function of x and y which is constant on the
G X ® right cosetsin ® x €. Since there is a natural homeomorphism of this coset space on
M x € there is a unique Borel function A, 0n M x & such that A,(h(x),y) = p(xy)/
p(x) forall x and y in ®. 4,is easily seen to have the following properties:
(@ for all zinIM and all xandyin ®.1,(z,xy) = A,([z]x,y) A,(z,x) , (b) for all
§inG,A,(h(e), &) = 6(&)/A(E) where e is the identity of ®, (c) 4,(h(e),y) is bounded on
compact sets as a function of y. We shall call a positive Borel function on It X & with
properties (a), (b) and (c) a A — functoin.

It is almost immediate that every A -function is of the form 4,, for a p-function which
IS unique except for a positive multiplicative constant. The proof of the next lemma is



modeled closely on an argument given by Weil [42] In studying “relatively invariant"
measures.
Lemma (1.2.5)[11]: Letp be an arbitrary p-function on ®. Then there exists a quasi in-
variant measure u in M Such that for ally € ® 4,(.,y) is a Radon-Nikodym derivative of
the measure E — u([E]y) with respect to the measure p.
Proof. Consider the mapping f — f" defined in the proof of Lemma (1.2.3). As shown by
Weil [43] this mapping is "onto™ from the continuous functions with compact support in ®
bto the corresponding family of functions in 9t.

By virtue of the well-known connection between integrals and measures [25] we may
define M by defining [ f"(z) du(z) for all f with compact support.
We let a denote right invariant Haar measure in ® and set

| '@ du(z) = f f()p(x)da(x).

In order for this definition to be valid it must be shown that [ f"(z) du(z) depends only
upon f" and not on f . Suppose that f"=0 for some f. We shall show
that [ f(x)p(x)da(x) = 0 . Wehave by definition that [ f(éx)dv(é) =0 . Hence
[f(E1x)6(EHdv(€) =0 . Hence for each continuous g With compact support
[Jr(x)g()f(E %)) dv(é) da(x) =0 . Applying the Fubini Theorem and then
replacing x byéx in the integration with respect to x we obtain

j f p(ENGENF (A (©)5(E ) da(x)dv(€) = 0.

Using the p -function identity we may eliminate § and A. Following this with a
reionterchange of the order of integration gives

jf PG EDF(x) dv(€) da(x) = 0or f p()f (g @da(x) = 0

But as already noted g’’can be any continuous function with a compact support in 90t. In
particular if we choose g so that g’ is one on h(K), where K is the compact support of f, we
may conclude that [ f(x)p(x) da(x) = 0as desired. Now choose any y in ® and consider
the measure

E - u(Ely) = wy(E)[f'(2)d,(2) [f"([2];")du(z) = [ fxy Dp(x)da(x) =
JfG)pCGey)da(x) = [ f)A,(h(x), y)p(x)da(x) = [ f"(2)2,(z,y) du(2).

It follows at once that y is quasi invariant and 4, (., y)is aRadon Nikodym derivative of
py,With respect to p.

Let us Write u ~ A whenever A(.,y) is a Radon derivative othe measure E — u([E]y)
with respect to u forall y € ®. Using the above lemmas and the accompanying remarks we
should have no difficulty in verifying the truth of the following Theorem.

Theorem (1.2.6)[11]: There exist quasi invariant measures In 9Jt. Any two have the same
null sets and hence are mutually absolutely continuous. The Borel set E in 9t is a null set if
and only if h=1(E) has Haar measure zero.

The relations 4 ~ Aand A = A, between quasi invariant measures, A — functions and p -
functions have the following properties:

(a) Every A -function is of the form 4,; 1,; = A, if and only ifp; /p,is constant.
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(b) For every A — function A there is a quasi invariant measure y such that u ~ A; if u; ~
Aand u, ~ Athen y, isaconstant multiple of .

(c) For every quasi invariant measure u there is a A — function A such that, u ~ A; if u ~
Aand, u ~ Aythen for ally, 4, (.,y) = 1,(.,y) almost everywhere in 9t.

(d) If u~ A,,and, u ~ A, then p; /p, is almost everywhere constant.

By a representation U(x — U,.) of the separable4 locally compact group ® we shall mean a
homomorphism of ® into the group of all unitary trans- formations of some separable [15]
Hilbert space $H(U) onto itself which is continuous in the sense that for each v € $H(U) the
function x = U,.(v) is a continuous function from ® to $H(U). We remind the reader of the
well known fact that in order to be able to conclude that U is continuous in this sense it is
enough to know that for all v, and v, in $(U) x - (U,(v;)v,) is a measurable function of
X.

Here (, ) denotes the scalar product of the expressions inside.

Let G be a closed subgroup of ®and let L (¢ — L&) be any representation of G. Let
pbe any quasi invariant measure in the homogeneous space It = &/ of right G cosets. Let
us denote by p: the set of all functions f from & to $(L) such that
(@) (f(x),v) is a Borel function of x for all v € H(L).

(b) f(¢x) = Lg(f(x)) forallé € Gandallx € 6.

©) [(f(x),f(x)) du(z) < oo where the meaning of the integral is to be found in the fact
that the integrand is constant on the right G cosets and hence defines a function on It =
®/G . It is readily showd that if f;andf, are any two members of ug: then

[(fi(x), f(x)) du(z) is absolutely convergent. We denote its value by (fi: f,). We shall
leave the straightforward but rather tedious task of verifying That when functions equal
almost everywhere are identified pc. becomes a Hilbert space under the inner productf;: f5.

It suffices to make obvious modifications in the corresponding proof for the square
Summable functions on a measure space and keep in mind Lemma(1.2.2).
Now let p be a p-function such that u ~ A, For each y in® let T,,, map f € pg. into g

where g(x) = /p(xy)/p(x)f (xy).

An obvious calculation shows that g is also in pge and that (f : f) = (g:9) .
Moreover T, (T2 (f)) = T, ,,,(f) Finally an easy argument shows that (T,,(f): g). is a
Borel function of y for each f and g in ug.. Thus for each y,T, , defines a unitary
transformation My in the Hilbert in ug.- space [16] associated with ug: and the mapping
Y = Uyl is the representations u,Lof ®

Theorem (1.2.7)[11]: Let u and u'be quasi is invariant measures int = €/G. Then there
exists a unitary transformation V from $(u,1) onto H(u',;2) such that V(uyL) V-1 = ”’Ué

for all y in ®; that ¢ is the representations u,. and u';. are unitary equivalent.
Proof: Lety with Borel function which is a Radon Nikodym derivative of u with respect to

u'and let h denote the natural mapping of € on /G. Then for each f €* &, /i o h(f) is
inu gz and the norm of f in uge is equal to that of \/i o hf in pgL. Moreover every gin
W gL is evidently of the form /i o hf for some fin ug. . Let V be multiplication by
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J ¥ o h.Then V defines a unitary map of ®&(u,.) on ,®&(u',L) . The verification of the fact
that V (py2 )V =t" yLfor all y is immediate.

Since we shall not in general distinguish between representations of a group which are
unitary equivalent we may drop the u and refer simply to the representation U of . We
shall call U™ the representation of € induced by the representation L of G. The notation U’ is
unambiguous only when no other group containing G as a closed subgroup is under
consideration.

Let v denote right invariant Haar measure in G and let C; denote the set of all
continuous functions with domain ®, range in ®(L)and compact support. Let K¢ denote the
compact support of the member f of Cj.

Lemma (1.2.8)[11]: For each f € C,.there is a unique function f° from € to €(L) such that
JLe—; (f(€x)), v) dv(é) = (f°(x),v) forallx € ® and all v € $ (L). This function is
continuous and is in pge for all quasi invariant measures u. The function defined on®\ G by
(f°(x), f°(x)) has a compact support. Finally  supyesll fO(x) | =
V(KK N G) supsesl £ .

Proof: For each fixed x in ® consider [(L¢_1(f(§x), v) dv(§). It is evidently anti- linear
and bounded as a function of v and hence is of the form (f°(x), v) where f°(x)is a member
of $(L) depending upon x. We must show that the function f°(x — f°(x)) has the desired
properties. Let K denote the compact support of f.

It follows easily from the definition of £ that|lf°(x;) — f2(x)ll = 2(supgeg|| f(€x1) —
FEx))(supyes V(K7 n G)) forall x; and x, in ®. Since f is uniformly continuous
it will be sufficient to show the finiteness of sup,.sv(Kx™! N G) in order to be able to
conclude that £ is continuous.

Now [17] for all x € GK,Kx™! € KK~'& for some £ € G and hence Kx™1 N G S

(KK~ N G)¢. Moreover for all x ¢ GK,v(Kx™* n G) = 0. Thus v(Kx™! n G) C
v(KK~' n G) for all x and hence is bounded as was to be showd. That f°(§x) = Lgf°(x))
for all £ € G and x € ® follows from a straightforward calculation. It is equally easy to see
that (F°(x),f°(x)) = 0 for x ¢ GK.Thus as a function on 6/G, (f°(x), f°(x)) vanishes
outside of the compact image of GK in /G.

The proof of the final assertion is an obvious modification of that of the continuity of
fo.

We shall denote the class of functions of the form f° for f € C, by C).
Lemma (1.2.9)[11]: For each x € ® the vectors f°(x) for f° € C? form a dense linear
sub- space of H(L).
Proof: Note first that if f° € C and f; is defined by the equation f;(x) = f(xs) for all x
and s in ® then (F%)(x) = (f)°(x) so that for all f and s, (f°), € C? . Thus the set of
vectors fO(x) for f° € CP and x fixed is independent of x. Let$, be the orthogonal
complement of this set of vectors. Then if v € $,we have (f°(x),v) = 0 forallf° and all
x. Thus (f° (éx),v)) = (f°(x),Le—1(v)) is zero forall f© and x and all ¢ € G.

Hence $,is invariant under the representation L. Let L' be the component of L in $,.
Suppose that there exists a non zero member O of C2. Thenf® € ¢? and we have a

contradiction since the values of f%are all in $; . Thus in order to show that $, = 0 and
12



complete the proof of the lemma we need only show that when $,; = 0 there exists a non
zero member f of CP. But if none existed then f(L’E_l(f(Ex)),v) dv (&) would be zero for
all x, all vin $(L) and all £ in C; This is readily seen to be impossible.

Lemma (1.2.10)[11]: Let C be any family of functions from ® to $ (L) such that:

(a) For some quasi invariant measurep in /G, C S pge

(b) For each s € ® there exists a Positive Borel function ps such that for all f € C, Psfs €
C where fs(x) = f(xs).

(c) If f € Cthen gf € C for all bounded continuous complex valued functions g on ®
which are constant on the right G cosets.

(d) There exists a sequence f; , f», ... of members of C and a subset P of ® of positive Haar
measure such that for each x € P the members f; (x), f5(x).,..of $(L) have $(L) as their
closed linear span.

Then the members of C have piq. as their closed linear span.

Proof: Choose fi, f,, ... as indicated under (d). Let u be any member of wug: which is
orthogonal to all members of C. Then ((psg) (f;)s: u) is zero for every s and every bounded
continuous g on ® which is constant on the right G cosets.

If follows at once that forall sand all j = 1,2, ... (f;(xs),u(x)) = 0 foralmost all x in ©.
Since (fj(xs),y(x)) is a Borel function on & we may apply the Fubini Theorem and
conclude that for almost all X, (f;(xs),u(x)) is zero for almost all s

Since j runs over a countable class we may select a single null set N in® such that for each

x &N, (fj(xs),u(x)) is , for almost all s,zero for all j. It follows that for x & N there exists

s € x7'P such that (f;(xs),u(x)) =0 forj=1,2,..and hence that u(x) = 0 thus u is
almost every where zero and C must be dense in pge

Lemma(1.2.11)[11]: Let C; be any family of functions from & to $(L) such that:

(@) For each f € C, there exists a positive Borel function p on ® such that (f(x)/p(x),v)
Is continuous in x for all v $H(L).

(b) For some quasi invariant measure 4 in /G, C; = pgL

(c) For each s € ® there exists a positive Borel function p,, such that for all f €
Ci,ps [ € C;where f,(x) = f(xs).

(d) If f € C; then gf € (, for all continuous complex valued functions g on & which are
constant on the right G cosets and vanish outside of A~1(K) for some com- pact subset K of
®/G.

(e) For some (and hence all) x € ® the members f(x) of $ (L) for f € C; and x fixed
have $ (L) as their closed linear span.

Then the members of C; have p: as their closed linear span.

Proof: Choose fi, f5, ... in C; so that f;(e), f>(e), ... have § (L) as their closed linear span;
e being the identity of €. Let u be any member of p:. which is orthogonal to all members of
C1. Then (ps g(fj)s: ) is zero for everys € ® and every g which satisfies the conditions
listed under (d). It follows at once that for all x and all j = 1,2, , (fj(xs),u(x)) = 0 for
almost all x in®.
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Since (fj(xs),u(x)) is a Borel function on & X6 we may apply the Fubini Theorem and
conclude that for almost all x, (f;(xs), u(x)) is zero for almost all s. Since j runs over a
countable class we may select a single null set N in ® such that for each x ¢ N,
(fj (xs),u(x)) is for almost all s zero for all j. Suppose that u(x;) # 0 for some x; & N then
(fj(e), u(xy)) # 0 for some j. But for some positivep, (f;(x), u(x;,))/p(x) is continuous in
x.Hence (fj, (x15),u(x1))/p(x1s) # 0 for s in some neighborhood of x7' .
Hence (fj(xs),u(x;)) # 0 for s in some neighborhood of x;*.But this contradicts the fact
that (f;(xs),u(x;)) isalmost everywhere zero.

Thus u(x) is zero almost everywhere. Thus only the zero element is orthogonal to all
members of C; and it follows that C; must be dense.

Lemma (1.2.12)[11]:C; is dense in uge for all quasi invariant measuresy on /G.

Proof: The truth of the lemma is an immediate consequence of Lemmas (1.2.8), (1.2.9) and
1.2.11).

( IZet there be given two closed subgroups G, and G, of ® such that G; € G,.

Let L be a representation of G; . Then we may form GZUL and GV ". Denoting the

first of these representations by M we may also form &Y M

Our object is to show [18] that the representations UM and U™ are unit ary equivalent;
In words that one may "raise L from G, up to ®" in several stages without affecting the result.
To do this let u;, and pu, be arbitrary quasi invariant measures in /G, and /G,
Respectively and let p, and p, be associated p -functions. Then let us define
p3(x) as p;(x)/p,(x) for all x in ® and let §; and &, be defined for G, and G, as § was for
G.

6 6 )
We see at once the ps (§x) = p1(§)/p2(§%) = =5 p(X)/ 45 P2 () = 35 ps(x) for

§ € Gyandx € ®. Thus p; restricted to G, is a p-function for the homogeneous space
G,/G,. We let u;be a quasi invariant measure associated with this p-function. In what
follows v, , v, and v will denote right invariant Haar measure in G4, G, and ® respectively.
When f is a function on G, which is con-stant on the right G,, cosets we shall use the
notation [ f(y) d,.(z) to indicate the integral with respect tou;of the function defined G,/
G, by f and likewise for u,and u,.

We shall also use G etc. to distinguish between the possible meanings of ¢ in the
present context. Now for each fixed x in ® and each f in for u, gL let £, denote the function

from G, to H(L) which takesy € G, into f (yx)\/ p3(yx)/ps(y). We show first that for f
in a certain dense subspace of Ha gL We have f, € Higr for all x . It is evident that for any f €

My gLWe have £, (¢y) = Lg(fx(y)) forallé € G,andall y € G,. Moreover
(FxrMw) = (FOx),w) yp3(yx) / ps()

which is surely a Borel function of y for all w € $(L). Finally we show that iff is of the
form U (F) + Us (Fy) + ...+ U (F,) where each F; € € and each S; € ® then for all

x, [ (), () dus(z) < oo so that f; is in  Uzgl .To do this we need only consider the
case in which f is actually of the form UL (F) foran F € ).
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Since we shall have use a little later for the resulting formula we shall compute
O, () dus(z) where f' = UL(F') and s’ and F’ may be different from s and F. It
Is not clear that this integral has meaning unless the integrand is non negative. However its
finiteness in the case s = s'and F = F' implies its meaningfulness and finiteness in the
general case. Thus we may compute it on the assumption that the integrand is summable and
this assumption will be justified by the fact that the endresult will be evidently finite in all
cases.

We have

f (FxO) f'O)) diia(z) = f (s ) /s N F ),

f'(yx)) dus(z) = j p3s (%) /ps (1)) (V1 xs)ps (¥xs") [ p1 (%)) (F (yxs),

F'(yxs')dus(z) using the fact that p, (yxs)/p1(x) = p,(yxs)ps(yxs) / p.(yx)ps(yx) and
p2(Yxs)/p(yx) = p,(xs)/p,(x) this reduces to

VP2 (x8)p2(xs") / pa(x)) f VP3(yxs)ps(yxs”) /ps (1) (F (yxs), F'(yxs")) dus(2).

Now by Lemma(1.2.8) (F(xs),F'(xs") as a function of x defines a continuous function with
compact support on /G, . Thus by the argument of Weil referred to in the proof of Lemma

(1.2.5) it may be put in the form (F(xs), F’(xs’)) = [ Y(&x)dv,& where ¥ is continuous on
® and has compact support. Thus our expression may be written [19]

(VP2(x8)p2(x5")/p2 () [/ p3(¥xs)p3(¥xs") [p3(¥)) [ (Eyx) dvy(§) dusz(z)
= (p2(x8)pz(xs") /p2 (%)) f VP3xs)ps(yxs') P (yx)dv,(y)

and this is evidently finite.
Let us designate the set of all f* s of the form U¢; (F)+ ...+ Ug (F,) by C[. Our next task is

to show that for each f € C[ the function x - f, from & to M3 gL IS in Hagm and has the
same norm as amember of p, M that f foes when regarded as a member of u, oL First of all
if f is any element of ¢/ and g€ uz then (fiig)=

[\ ps(yx)ps(¥) (f (yx), 9(y))dus(z) and this is clearly a Borel function of x. Moreover
frx@) = fOm0)ps(ynx) [p3(¥)

= (oM Pz mx)/psm v s /ps ) MV s ) /ps(v)-
Forall x in® and allnand y in G,. Thus f,,,, = M, (f,)Finally in order to establish the fact

that [(fy: f) duy(2) is finite and equal to [(f(x), f(x) dus(z)we need only show that if
f €g UL(F) and f' = f €g UL (F') where F and F'are in GO then [(f,:f)) duy(z) =
[(f(x), f'(x) du,(z). Moreover just as in the corresponding situation above we may
assume that the first Integrand is summable. Using the expression computed above for

fx: [ We get
f (o £2) itz (@)

- f WP GS)Pa ) /92 (1)) f ORI x) () dvy () dps (2)
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= f VP2 (xs)py(xs") y/ pa(x5)p3(xxs’) Y(x) dv(x) = +/p1(xs)p1 (xs")P(x) dv(x).

On the other hand
j (f (), f'(x) dus(2) = j V (p1 (x5)p1 ((x") /p1(x)) F(xs), F' (xs")d, ()

= f J 01 G)p1 (s /p1(0)) ( j ¥ (6x) dvy () dp (2)

- [Vorean G v v,

Thus the desired equality is established.
We have now a linear norm preserving map from the dense subspace C[ of
HagL INtO fip g1 We denote by T its unique continuous extension to all of T then is a unitary

map of M1 ONtO @ closed subspace of Hagm - In order to Complete the proof of the unitary

equivalence of U™ and UM we must show that TgUL = GUYX for all x in @ and that T has
all of Ha gm for its range.

An obvious computation shows that TgUL: = GUX T(f) for all fin CT and the
corresponding result for general f follows from the density of C{. To show that the range of T
is all of Hagm W have only to show that this range is dense in Ha g and this may be done
using Lemmas(1.2.10) and (1.2.11). Let C of Lemma (1.2.10) be the set of all T(f) for f €
CI. Then (a) of this lemma is clearly satisfied. That (b) and (c) are also satisfied follows from
quite elementary considerations. It remains to verify (d). To this end we first apply Lemma
(1.2.11) to show that for each x € ® the set of all members of M3 g of the form f, for f €

C? is dense in M3 gm given x € ®, let C; of this lemma be the set of all members of H3 gm of

the form f, forf e CP. If f, € C;then f.(y) = f(yx)\/pg(xy) / p3(y). Since by Lemma
(1.2.8), (f(yx),w) is continuous in y for each w in (L) it follows that (a) of
Lemma(1.2.11) is satisfied. Condition (b) has already been verified and conditions (c) and (d)
may be verified by obvious arguments. That condition (e) is satisfied follows immediately
from Lemma (1.2.9). Thus Lemma(1.2.11) applies and for each x € ® the £, for f € C,
are indeed dense in us oL Now choose a sequence f; , f5, .... of members of G« such that for

each f €g C_ there exists a subsequence f;,_ , f,_,...which converges uniformly to f and
Is such that its members vanish outside of a common compact set. We shall show that the
sequence T(f%), T(£y), of members of Hagm has the property required in (d) of lemma

(1.2.10); that we shall show that for each x in® the members y — fjo(xy)\/ ps(yx) / ps(y)
of M3 are dense in Mg In view of the foregoing we need only show that if x €
®and f,, — f inthe sense indicated above then (fnok)x = (f%)y inthe usg norm.

Thus we need only show that || £;2]| < M (x. K)supgeglf(s)|| where K is a compact
set containing  the support of f and M(x.K) is a positive real number. But ||£2| =
J(F°x), o (yx)) (ps(yx)/p3(¥)) dus(z) and if f vanishes outside K and h, maps G,
canonically on G,/G, then f(yx) vanishes for y € K;1N G, sOf°(yx) vanishes for

16



h(y) ¢ h(K;N G,). Let 3 be continuous and have compact support in G, and be such that
1 () = [P(Ey)dv(§) is one on h(K;'NG). Then

IF2I2 < (supuegllf°@)I1) j Y95 () dvs ()

< v, (KK-'NG) j W95 ) dvs ) (supeg lIF WI1P).

We have thus completed the proof.
Theorem (1.2.13)[11]: If L is the regular representation of G, ® then, ®U" is the regular
representation of ®.

Let us denote the conjugate space of a Hilbert space $ by $. We know of course that
there is a standard norm preserving anti linear mapping v — v* of $ onto $; This being
defined by the equation v*(w) = (w,v). Nevertheless it will be convenient to distinguish
between $ and $ (although not between ( $ and $)).

We have thus two meanings to be attached to the adjoint T* of a bounded linear
operator T in $; the ordinary general meaning as an operator in $ and the specific Hilbert
space meaning T*(v) = (T*(v*))*. We shall use T* in both cases trusting to the context or
explanatory remarks to make clear what is meant in each instance.

Let Ube an arbitrary representation of the separable locally compact group $. By U the
adjoint of U we shall mean the representation of ® in $(U) defined by the equation (U), =
(Ux-1)"

Now let L be a representation of the closed subgroup G of $. If ,u is a quasi invariant
measure in /G and fand g are members of $H(u,L) and $ ((yuz)) respectively then for
eachx € ® (f(x),g(x)") is a well defined complex number.

We have in addition (f(¢{x),g(éx)") = (f(x),g(x)*) for all £inG . Thus since
(Fx), g@) = NIf I Nlg@)Il and [If()II> and [[g(x)|I* defines define summable
functions on /G we may form | (f(x), g(x)*du(z) = flg Thus each g € $(u,.) . Defines
amember f — flgof H(ayt) .

Theorem (1.2.14)[11]: The meaning of $(u,z) into H(u,r)defined by the equation f|g =
[(f(x), g(x)*du(z) is onto and unitary. It sets up a unitary equivalence between the
representations UL and UL.

Let $, and $,be two Hilbert spaces and let T be a linear transformation from $, to $,. Then
T* will be a linear transformation from$, to $, .

Let A be defined by the equation A(v) = (T * (T(v)*))* forallv € $,. . Then Ais anon
negative self adjoint operator in $, and admits accordingly a (possibly infinite) trace. We let
IIT]ll = VTraceA .As is well known and easily verified the set of all T for which |||T||| <
oo is a Hilbert space under the norm — |||T|]] .

The corresponding inner product is given by (T,S) = Trace B were B(v) = (S*(T(v)*))".
The T's in this Hilbert space are called the Hilbert-Schmidt operators from $,and $,. and
the Hilbert space itself the Kronecker product $, X $,0f $,and £,

Now let U and V be representations of the separable locally compact groups $,and £, .

For each x; ,x, € ®; X ®, the mapping T —» U, ,T(V,,)" is a unitary transformation of
HU) x H(V)onto itself. We shall denote it by (U X V), .
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Clearly the map x;,x, — (U X V), , Is a unitary representation of &; x &,.We shall
call it the outer Kronecker product U x V of the representations U and V of ®; X ®,.if
®,; = ®, = G then the subgroup &2 of all x,yin®, x &, = GXGwithx = y is
isomorphic to . The restriction to 2 of U X V thus defines a representation Of ® which we
shall call the Kronecker product UQ V' of the representations U and V of . We note that
T — T~ sets up a unitary equivalence between UQ VandV ® U.

Theorem (1.2.15)[11]: Let L and M be representations of the closed subgroups G, and G, of
the separable locally compact groups ®,; and ®, respectively.

Then the representations &, x ®2ULXM and g, U* X g, UM of ®; X G, are unitary
equivalent.

Proof: Let T be a member of $(UL x UM) [that is an operator from $H(u2UM) to H(u,UL)]
whose range is finite dimensional.Then there exist fi,f, ... f, € H(*1UY) and
91,92 --Gn € ,H(*2UM) such that for each g € ,H(H2UM) we have T(g*) = (g1, 9)f1 +
o+ (g, g)fn For each x,ye ®; x &, we may define an operator Ar(x,y)
from$ (M) to H(L) as follows. (A7(x, Y)(W*) = f;(0) (g1 (), w) + -+ + () (Gn(¥), W).
We note at once that Ar($x,ny) = LgAr(x,y)M; forallx,y € ®; X &, and all§,n €
G, X G,.

Moreover [[|47(xe WIIIZ = 2y (i), £;(2)) (9:), 9:(»)) and
liiie = Zj(ﬁ:m(gf 90 = (] ¢ fie)dm@) ([ 0,00, 0:0)dm2)

- | <Zij(fi(x>'fj<x)> (90, 9:) A X 12)(2)

- j Az Ce 2 d Qs X 112) ().

Thus the function A7 (x,y = Ar(x,y)) isa member of $(UL*M) and the mapping T - Ay
Is linear and norm preserving. Moreover the domain and range of this mapping are dense in
H(UL X UM) and$ (UL*M) respectively.

As far as the domain is concerned this follows from the theory of Hilbert-Schmidt operators.
To show that the range is dense we need only apply Lemma(1.2.11) to those particular A;'S
for which the f; and g; are in ®,Cp and, ®,Cyy respectively.We leave the easy but mildly
tedious task of verifying that the hypotheses of this lemma are satisfied. T — A, may thus
be extended by continuity to give a unitary map of $(UL XUM) On H(ULXM) and it is almost
immediate that this map sets up the required unitary equivalence.

Corollary (1.2.16)[11]: Let the separable locally compact group ® be the direct product G x
G, of the closed subgroups G and G, and let L be a representation of G.

Then U™ is unitary equivalent to the outer Kronecker product of L with the regular
representation of G;,.

The second of our three main Theorems asserts the existence of a certain useful direct sum
decomposition of the Kronecker product UX®QU™ of two induced representations of a group
®. By definitionUL® UM is obtained from the outer Kronecker product UXX UM of GX ® by
restricting UL XUM to the subigroup ® of allx,y € & X G withx = y. By Theorem
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(1.2.15) , UXXM s unitary equivailent to U XUM . Thus UL XUM can be analyzed by
ahalyzing the restriction of U “*Mto ®.Our Theorem on Kronecker products follows from
these remarks and a Theorem (our first main Theorem) on the decomposition of the
restriction of an induced representation to a closed subgroup. Let L be a representation of
the closed subgroup G, of® and consider the restriction U~%z of UL to a second closed
subgroup G,.
While ® acts transitively on the homogeneous space & /G, or right G, cosets
this will not be true in general of G,.
Moreover any division of ®/G; into two parts S; and S,,each a Borel set which is not a null
set®, and each invariant under G, leads to a corresponding direct sum decomposition of U%¢z
indeed the closed subspaces $; and $,, of all f € ®G(u,.) which vanish outside
of h~1(S,) and h™1(S,) respectively are invariant and are orthogonal Complements of one
another.

Suppose that there is a null set N in /G, whose complement is the union of countably
many non null orbits C;, C,, ... of ®/G; . under G,. Then we obtain by the above procedure a
direct sum decomposition of UX% into as many parts as there are non null orbits. Our
Theorem follows from an analysis of the nature of these parts and it is with this analysis that
the present is concerned.

We consider a more general case in which all of the orbits can be null sets and our sum
becomes an integral.
Since we can do so with but little extra effort we will make the analysis to follow apply to
this case as well. Of course according to the definition given above $. will be zero
dimensional whenever C is a null orbit. However it is possible to reword the definition so that
it always gives a non zero Hilbert space and so that when C is not a null set this definition is
essentially the same as that already given.
Indeed note that when C is an orbit which is not a null set then $.may be equivalently
defined as follows.
Let x, be any member of ® such that h(x,) € C and consider the set $ of all functions f
from the double coset G,x,G, to $H(L) such that:(a) (f(x),v) is a Borel function for all v €
H(L), = (b) f(éx) = Lg(f(x)) forall ¢ € G, and all
X € G1x9G, and (c) fc (f(x), f(x))du(z) < oo wherepis a quasi-invariant measure in
®/aG;.
9L under the norm implicitly defined under (c) is evidently isomorphic to $, in a natural
manner. Moreover the measure in C need not be defined by restricting u to C. Instead noting
that G, acts transitively on C we may apply Theorem(1.2.6) and define u.as a quasi invariant
measure in C associated with the A function 1., where A., is the restriction to C X ®, of
theA-function associated with u. Strictly speaking Theorem (1.2.6) does not apply since C is
not a coset space or even known to be locally compact.
However the mapping x — h(xyx) sets up a one-to-one Borel set preserving
Correspondence between the points of C and those of the coset space G, /G, Where G, is the
set of all x € G,such that h(xyx) = h(x,); that is G, = G, N(x5 G x,).Moreover it is
evident that this mapping allows us to apply Theorem(1.2.6) to the case at hand. Using
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U for uthe above - definition of $; gives a non trivial space for every orbit C. We are now
In a position to formulate the lemma giving the sought for analysis.

Lemma(1.2.17)[11]: Let C be any orbit in /G, under G, and let x, be such that h(x,) €
C.

Let $H.be defined as above .Let U be the representation of G, induced by the representation
n— L, . .-10f G,N (xx51G;X,). Then there is a unitary map of $(U) on $ such thatif f €

XoNXo
$H(U) corresponds to g € H;' then U (f) corresponds tog, where g.(x) = g(xs)/A(x,s)
forallx e Candall s € G,.
Proof: For each function f on G, x,G, which satisfies conditions (a) and (b) of the definition
of §. let f(t) = f(xot) forallt € G, .
Then (f(t),v) is a Borel function on G, for all v € $(L) . Moreover if n € G, =
G, N (x5" Gixo) then if &= xonxy™ we have f(nt) = f(xg'éxet) = f(§xot) =
Le f (1) =Ly ya;r (F(D)) thatis

() f(mt) = onnxgl F@®)

for all t € G, and all n € G, N (x5*Gyx,). Conversely let g be any function from
G,to $(L) which is a Borel function in the sense that f was and which satisfies (*).We define
f&xgt) = Lg((gt)) for all £€G, and t € G, . If &xpty = &Expt, then 51 & =
Xotti'xg S0 that g(tati't) = Lzl (g(t)). Thus Lg(g(t)) = Lei(g(t)) and fis
unambiguously defined. We show next that (f(x),v) is a Borel function of x for all v €
H(L). Let f1(§,m) = Le(g(n)) forall §,nin Gy, G, .

Then (fi(&m),v) = (g, Le—1(v)) = X2:(g(), 9)) (@i, Le—1(v) where {p;} is an
orthonormal basis for $H(L).

Evidently then (f;(&,7n),v) isaBorel functionof é,n € G, X G,.

Let us introduce a new group operation in G;X G, . by defining (&,1n1)(&,n,) =
(¢:&,,m,m,)and let us call the resulting group G5.

Then &ixony = &xom, i and only if (&3,1,)7 (&,m1) = &3¢, mm; ' has the form
E: x61€_1x0'

The set of all such is a subgroup G, of G5 .Thus &,n — &xgn Sets up a one-to-one
correspondence between the points of the homogeneous space G5/G, and the points of the
double coset G,x,G.

Moreover it follows from the existence of Borel sections that the function on G5 /G, defined
by (f;(§,n),v) is a Borel function.

That (f(x), v) is a Borel function now follows from the fact that the mapping of G5 /G,0f on
G,x,G, defined above preserves Borel sets.

Observe finally that f = g is a one-to-one map of Borel functions satisfying (*) onto
functions satisfying (a) and (b) of the definition of $. .Consider the mapping t —
h (xot) of G, ontoC. It is one-to-one and Borel set preserving from G,/(G, N
(x51G;x,))to C Moreover if t and z correspond under the map andn € G, then [t]n and

[z]n do also. Finally the functions ||f||? and ||f||2 define function on C and G, / (G, N
(x5 1Gyx)) respectively which correspond under this map.
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If we use this same map to transfer the measure p.in C over to the homogeneous space
G,/(G, N (xg1G;x,) we will get a quasi invariant measure v There such that

TIEEN? du(z) = f||?(x)||2 dv(z'). Thus f — f' sets up the unitary transformation
demanded by the conclusion of the lemma.

Let G, and G, be closed subgroups of the separable locally compact group ®.

We shall say that G; and G, are discretely related if there exists a subset of ® whose
complement has Haar measure zero and which is itself the union of countably many G;: G,
double cosets. Since the double cosets G,: G, are in an obvious natural one-to-one
correspondence with the orbits in /G, under G, the discussion in the preceding and Lemma
(1.2.17).

Theorem (1.2.18)[11]: Let U" be the representation of ® induced by the representation L of
the closed subgroup G; of ®. Let G, be a second closed subgroup of ® and suppose that
G, and G, are discretely related. For each x € ®& consider the subgroup G, N
(x~1G,x) of G, and let xV denote the representation of G, induced by the representation
N = Ly, Of this subgroup.Then xV is determined to within unitary equivalence by the
double coset G;xG, = D(x) to which x belongs and we may write pV =,V where D = D(X).
Finally U restricted to G, is the direct sum of the pV over those G;: G, double cosets D
which are not of measure zero.

As a fairly easy Corollary of this Theorem combined with Theorem(1.2.15) we get .
Theorem (1.2.19)[11]: Let G, and G, be discretely related closed subgroups of ®Gand let L
M be representations of G, and G, respectively. For each x,y € & X ® consider the
representations s — L,g,-1ands — M,.,-1 of the subgroup (x7'G;x) N (y~'G,y) of
®. Let us denote their Kronecker product by N*¥ and form the induced representation UN*Y
of ®. Then UM*Y, is determined to within unitary equivalence by the double coset G, x; G,
to which x;* belongs and the direct sum of the U"*¥ over those double cosets which are not
of measure zero, is unitary equivalent to the Kronecker Product ULQUM of UL and UM.
Proof: ULQUM Is the representation of & obtained from the representation
ULQUM of ® x by restriction to the isomorphic replica ® of ® consisting of all x,y €
® X ® with x = y. Moreover by Theorem(1.2.15) , U* x UMis unitary equivalent to UM
where L X M is of course a representation of G; X G,.

Thus we have to do with the restriction of an induced representation to a subgroup and may
try to apply Theorem(1.2.18). An easy computation shows that the mapping x,y —
xy lof ® x ®on® sets up a one-to-one correspondence between the double cosets
(G, XG,):€of ® x ® and the double cosets G,:G, of ® in which (G, X
G,) (x,y) ® corresponds to G;xy~'G,. Furthermore in this mapping double cosets of
measure zero correspond to double cosets of Measure zero.

Indeed x,, y; and x,, y, go into the same point of ® if and only if they belong to the same
left ® coset. Thus a one-to-one mapping of ® onto the left coset space (6 x )//® is
induced. By Lemma (1.2.3)(which is of course equally true for left coset spaces) a double
coset in® x ® is of measure zero if and only if its image in(® x ®)//® is of Measure
zero with respect to the quasi invariant measures in this coset space.
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On the other hand the measure in transferred to (® x ®)//®by the one-to-one mapping in
question is readily seen to be quasi invariant. Thus the hypotheses of Theorem (1.2.18)are
satisfied. By this Theorem UX*M restricted to ® is a direct sum over the double cosets
(G, X G,) (x,y) ® which are not of measure zero and the summand associated with the
double coset containing x, y is the representation of 3 induced by the representation

S,§ = (L X M) xy)(s,s)(xy)~ ! of ® N ((XJY)_l(Gl X GZ) (X'Y))'

But it is easily verified that ® N ((x,y)"1(G; X G,) (x,y)) transferred to ® by the natural
isomorphism is the subgroup x 1G;x N y~1G,y and that the representation s,s —
(L X M) xyyss)xy)-t becomes the representation L' XM’ where L' is s —
Lysxand M'is s > My .

Let U and V be representations of the separable locally compact group €. A bounded linear
operator T from $H(V) to H(U) will be called an intertwining operator for U and Vif U,T =
TV,.forall x € 6.

If T is in addition a Hilbert Schmidt operator it will be called a strong intertwining operator.
The dimension 0,1, 2,.., oo of the vector space of all intertwining operators For U and V will
be called the intertwining number I(U; V) of U and V. The dimension of the vector space of
all strong intertwining operators will be called the strong intertwining number J(U,V) of U
and V.

Let ($(U)), be the smallest closed subspace of $ (U) which contains all finite dimensional
subspaces of $(U) which are invariant under U. Then ($(U))¢itself an invariant subspace
of $(U). The component of U in this invariant subspace we shall call the finite discrete part
of U and denote it by °U.

Lemma (1.2.20)[11]: Let U and V be representations of the separable locally compact group
®. Then J(U, V) (D(U)) = I(°U,° V) and this number is equal to the number of times that
U ® V contains the identity representation as a discrete direct summand; that is the dimension
of the subspace of $H(U) in which all U, .act as the identity.

Proof. If U, T = TV,.then U, TV;! = T which may be written U, T;=T Or (U®I7)x(T) =
T. Since all steps are reversible the equality of J(U, V) to the dimension of the identity
component of UV is established. We now show the equality of J(U, V) and I1(°U,° V). Let
T be any strong intertwining operator for U and V. Let M, be the orthogonal complement of
the null space of T and let M; be the closure of the range of T. Since T is an intertwining
operator it follows that M;and M, are invariant under U and V respectively. Let A(v) =
(T*(T(v)*))*. Then A is a self adjoint operator in $(V) which commutes with all V, and is
completely continuous. Because of the latter property it has a pure point spectrum and each
non zero value occurs only a finite number of times. It follows that M, is a direct sum of
finite dimensional invariant subspaces and a similar argument shows that the same is true of
M;. Thus M, < (H(V))r and M, S(&(U))f . Hence every strong intertwining operator
carries (H(V))f into  (H(U))sfand is zero on the orthogonal complement of (H(V)) it
follows at once that J(°U,°V) = J(U; V). Finally it is evident that both I1(°U,° V) and
J(°U,°V)are equal to 3 ,,n,m, Where the sum is over all finite dimensional irreducible
representations of ® which appear as components of either °U or °V , and where
n,, (resp.m,,) is the multiplicity of occurrence of W in °U (resp. °V).
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Lemma (1.2.21)[11]: Let L be a representation of the closed subgroup G of the separable
locally compact group ®.

Then the number of times that U contains the identity as a discrete direct summand is equal
to the number of times that L contains the identity as a discrete direct summand provided that
®/G admits a finite invariant measure. If /G does not admit a finite invariant measure
thenU' does not contain the identity as a discrete direct summand.

Proof: Suppose first that ®/G admits a finite invariant measure u. Let f be any member of
, 9 (uye) such that f(xs) = f(x) almost everywhere in x for each s. Then f(x) is almost
everywhere equal to a certain constant vector v. Since f({x) = Lg(f(x)) forall x in € and
all ¢ in G it follows that v = L;(v) for all £ € G. Conversely let v be any member of $(L)
suchthatv = Lg(v) forallé € ¢ andlet f(x) = vforallx € ®.

Since ,u is finite it follows at once that f € $(u, ) and that Us(f) = f for all sin 6.
Thusv — f,wherev € % (L) and f,(x) sets up a one-to one linear map of the identity
component of $(L)onto the identity component of , $(UL) and the first part of the lemma is
showd.

Now let ,ube any quasi invariant measure in /G and let p be an associated p -function.
Suppose that U contains the identity a non zero number of times and that £ Is a non trivial

member of the corresponding subspace of H(, u,2) . Then f \/ (xs) p(xs)/p(x) = f(x) for

all s for almost all x. Thus f(x) 4/p(x) is almost everywhere equal to some fixed vector v.
Thus for each ¢ € G and almost all x v/p(§x) = Lg(v)/p(x). It follows that p({x) =
p(x) for all é&and x and hence that pis constant on the right G cosets. Now ||f||? =
vl [(1/p(x)) du(z) . Thus the measure whose Radon Nikodym derivative with respect

to uis 1/p,(where p'is the function on /G defined by p) is a finite measure. Moreover it

Is easily seen to be invariant.

With the aid of these two lemmas and Theorem(1.2.19) we may show the discrete case
of the third main Theorem.
Theorem (1.2.22)[11]: Let ®, G,, G, L and M be as in Theorem(1.2.19) .For each x and y in
® consider the  representations s - L,,-1,ands = M, -1, of (x"1Gx)N(y~1G,y) and
let J(L; M; x,y) denote their strong intertwining number. Then J(L, M, x,y) depends only
upon the double coset D = D(x,y) = G,;xy~'G, to which xy~! belongs so that we may
write J(L,M,D). Moreover whether or not (x 'G,x) n (y~1G,y) is such that &/
((x71G,x) N (y~1G,y)) admits a finite invariant measure depends only on this double coset.
Let be the set of all double cosets for which a finite invariant measure does exist and which
are not of measure zero. Then

> J@MD) = Jhu

Proof: By Lemma (1.2.21), J(U*, UM) is equal to the number of times that U*QUM =
UL ® UM contains the identity. By Theorem(1.2.19) , UL ® UM is a direct sum over the
double cosets of positive measure of certain induced representations UP" .Hence J(U%, UM)is

the sum over these double cosets of the number of times that UP" contains the identity. By
Lemma (1.2.21) agiven deon tributes to this sum only if D € D, and then its contribution is
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the number of times that the Kronecker product DN contains the identity .But again by lemma
(1.2.20) the number of times that DN contains the identity is exactly J(L, M, D). This
completes the proof.

If in Theorem(1.2.20) we let G; = G and G, = G then there is only one G;: G,double coset
and we may take x =y =e.

The Theorem then reduces to the following generalization of the Frobenius

Reciprocity Theorem.

Theorem (1.2.23)[11]: Let L be an irreducible representation of the closed subgroup G of

the separable locally compact group ® and let M be any finite dimensional irreducible
representation of . Then if ®/G admits a finite invariant measure, U contains M as a
discrete direct summand exactly as many times as the restriction of M to G contains L as a
discrete direct summand. If /G does not admit a finite invariant measure then U™ contains
no finite dimensional discrete direct summands.

Corollary (1.2.24)[11]:. If ® is not compact then its regular representation contains no finite
dimensional discrete direct summands.

Theorem (1.2.21) for compact (not necessarily separable) groups has been showed by Weil
[42]. F. 1. Mautner informs me that he has found a somewhat different generalization of the
Frobenius reciprocity Theorem than Theorem (1.2.21) for the case in which G is compact.

In order to rid the results of Part Il of the rather severe discreteness restriction there imposed
we need the notion of a direct integral or continuous direct sum of Hilbert spaces. Such a
notion has been developed by von Neumann [36] and in another form by Godement [21],
[22].

Mautner [31], [32], [33], and Godement [22] have applied this notion to the
decomposition of unitary representations of locally compact groups.

For our own use we have written up the theory in a form differing slightly
but not essentially from that of both von Neumann and Godement.

We shall sketch our form of the theory so as to have its principal results available for
later use.

We shall call the members of this field the Borel sets in Y. Let u be a completely
additive measure defined on all Borel sets and o-finite in the sense that Y is a union of
countably many Borel sets of finite measure.

The members of the smallest o -field containing all Borel sets and all subsets of Borel sets of
measure zero will be called the measureable subsets of Y. The measure p of course has a
unique extension to this larger - o field.

We shall call the system of objects just described a Borel measure space. Now suppose
that there is given for each y e Y a finite or infinite dimensional separable Hilbert space
9. Let 3 denote the set of all functions f fromY to U,cy 9, such that f(y) € $,, for all y
and such that y — || f()]|? is, u summable on Y. We shall call a subset X of & linear if it is
closed under the formation of finite linear combinations of its members. It is easy to see that
y—= (f(y),g(y)) is u summable whenever f and g are members of a linear X and that X
becomes a (possibly incomplete) Hilbert space under the scalar product (f:g) =
f (f(y),g(y) du(y) when functions which are equal almost everywhere are identified. If X
is maximal linear in the sense that it is contained in no properly larger linear X’ then a slight
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and obvious modification of the standard proof of the completeness of the space of square
summable functions shows that X is complete and hence is a Hilbert space.

Let X be a linear subset of 3. We shall say that X is pervasive if it contains a countable
family of elements f;, f5, ... such that for almost every y in Y the

Sequence of elements f; (), f2(¥), ... has $,, as its closed linear span. Modulo automorphism
of the §,, there is at most one pervasive maximal linear X. We have

Lemma (1.2.25)[11]: LetX,and X, be two pervasive maximal linear subsets of {.

Then for each y € Y there exists a unitary transformation U,, of $,, onto itself such that f €

X, ifand only if g € X, where g(y) = U, (f(y)) foralmostall y € Y.

Proof: By an orthogonalization process it is possible to replace the given pervading
sequences  f;,f2,..,91,9,, ... for X;andX, respectively by new sequences
fi,f2,. .. and g1, g5, ... having the following properties: (a) each f{ (resp.g;) is the
product of a complex valued measurable function and a member of X; (resp.X,), (b) for
almost all y, f'(y) = 0 implies f/.;(y) = 0and g;(y) = 0 implies g;,,(y) = 0,(c) for
almost all y the f;'(y) which are not zero form a complete orthonormal set in %, and the
same is true of the g; (). U, is then defined so that for almost all y, U, (f; )) = g; ().

There is no reason for supposing that a pervasive maximal linear X will exist in
general and indeed it need not.

On the other hand if all of the $,, have the same dimension one can be constructed as
follows. Simply map all of the $,, onto a fixed representative $, and consider the set of all
functions f from Y to $, such that (f(y),v) is measurable in y for each v in $,and
(f ), f (¥)) is summable. More generally suppose that forn = oo, 1,2, ... the y with §,,, of
dimension n form a measurable set Y,,. For each n let us map the $,, of this dimension on a
fixed representative$,,. Then we may obtain a pervasive maximal linear X as follows. Let
X be the set of all functions from Y to U$,, such that f(y) € $,, for all y € Y, such that
(f(y),v) is measurable on Y, for each v € $, and such that [(f(¥),f(y) du(y) < co.
Conversely it follows from Lemma(1.2.1) and the argument used to show it that this is the
general situation.

If a pervasive maximall linear X exists then Y,, is measurable for each n and X can be
defined in the manner just described. In the special case in which Y is a finite or countable
set and u is never zero it is clear, because of the measurability of all functions, that there is
only one pervasive maximal linear X and that is J itself.
In general however there will be, if any, many different but equivalent such X's
corresponding to the many ways of mapping the $, of a given dimension onto a
representative-which are not derivable from one another in a "measurable fashion". We shall
refer to each pervasive maximal linear X as a direct integral of the $,with respect to u. In
applications there is often a "natural™ choice of X.
In particular there will often be given a pervasive linear subset of J3 and it is not difficult to
show that every pervasive linear subset of < is contained in a unique (pervasive) maximal
linear subset of 3.

Let X be a direct integral of the §,,, and suppose that we are given a bounded operator

‘T in each $,,. If ('T(f(y)), g(y)) is measurable in y for each f and g in X and if ||'T|| is
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bounded then for each f in X,y -’ T(f(y)) = fr(y) will be in X also and f - fy will
define a bounded linear operator T of X into itself.

We shall call T the direct integral ['T du(y) of the VT with respect to X. It is not difficult
to show that this notion has the expected elementary properties; that is

f vp-dp(y) = (vr-dpu(y))”, f (S du(y) = ( f vrdu(y)> ( f vsdu(y))

and soon.

Now suppose that there Is given in each $,, a representation v, (x — vy )) of a fixed
separable locally compact group . We shall say that the mapping y — v, is measurable
with respect to a maximal pervasive linear X if for each fixed x € ® the direct integral V, =
J vy du (y) of thevy with respect to X exists in the sense described in the preceding
paragraph.

We shall say that y — vy is measurable if it is measurable with respect to X for some
X. Letnow y— v, be measurable (with respect to X say).

It follows from the elementary properties of direct integrals of operators that
Each V, is unitary and that x — V, has the algebraic properties of a representation. In order
to show that x — V1, is actually a representation we have need of the following measure
theoretic lemma.
Lemma (1.2.26)[11]: Let Y be a Borel measure space and let v be a Borel measure in a
separable locally compact metric space 9t.
Let f be a complex valued function defined on Mt XY which for each fixed y in Y is
continuous on Mt and for each fixed x in Wt is measurable on Y.
Then f is a measurable function on the product space 9t x Y.
Proof: There is clearly no loss in generality in upposing that 9t is compact. For eachn =
1,2, ... we may Write 9t as a disjoint union of Borel sets each of diameter less than 1 /
n: M =miUmz U ..m] Choose a point x;* in each m;* and let f;, (x,y) = f(x}, y) for all
x inm and all y in Y. Then it is obvious that f,, is measurable in both variables and a very
easy argument shows that for all x, and y, lim, o fr(x, U...y) = f(x,y).
Now let f and g be arbitrary members of X and note that (V.(f):g) =
f(vux(f(y)),g(y)) du(y). Since vyis a representation the integrand is continuous in x for
each y and by definition it is measurable in y for each x. Thus by Lemma (1.2.25) this
integrand is measurable in both variables. Applying the Fubini Theorem we conclude that
(Ve (f): g) is measurable in x so that V is in fact a representation. It is readily verified that the
following operations will carry V into a representation which is unitary equivalent to itself:
(@) Change of y; on a set of measure zero. (b) Replacement of X by any other maximal
pervasive linear X" with respect to which y — v, is measurable. (c) Replacement, of each v,
by a unitary equivalent representation. (d) Replacement of ,u by any other measure with the
same null sets. We shall call V the direct integral of the v, with respect tou.V =
J vy Udu(y).
Theorem (1.2.28)[11]: Let G be a closed subgroup of the separable locally compact group ©®.
Let M be a representation of G which is a direct integral over a Borel measure space Y, u, of
representations” L; M = f'Ldu(y). Theny —» Ut Is measurable and [ U™ du(y) is
unitary equivalent to UM.
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In any event M will be a discrete direct sum of representations each of which is a
direct integral of Y I's having a common dimension. Thus we need only consider the case in
which all of the $(VL) have the same dimension.

We may assume without loss of generality that there is a single Hilbert space $, in
which allL act and that (M) is the set of all functions fromY to $ such that (f(y),w) is

measurable forallw € $, [(f (y),f(y))zdju(y) <o,

Now let Cg , denote the set of all functions from Gto %, which are continuous and have
compact support.
Foreach g € Cg, and eachy € Y we may define gy(x) as in Lemma (1.2.8)using L for L.
We shall write gp(x) = g§(x,y). By Lemma (1.2.8), §(x,) is for each fixed y a member of
, 9(uyrL) where ,u is any quasi invariant measure in /G Now let S be the set of all
functions from ® x Y to $, of the form @, g, + ....+@,g,) where each g; € Cg , and
each @; is a bounded measurable complex valued function of y alone which vanishes outside
of a set of finite measure. Let r be any member of S. For each fixed x € ®,r(x,y) is a
function fromY to, 9.
It is not difficult to show that it is weakly measurable, bounded and zero outside of a set of
finite measure. Thus it is a member of $H(M).We denote this member of $(M) by r;/ . There
are also no difficulties in showing that the maping x — ry is continuous from
® to H(M).and is indeed a member of H$(UM). Finally by Lemma(1.2.11) the set of all
members of H(UM) of the form x — r;/ forr € Sisdense in H(UM). On the other hand the
members of S may be looked at in another way. For each fixed y in Y, r(x, y) as a function
of x is a member of $(x;2L). Call it ;! The mapping y — 7, is thus a function in the class
J use in constructing direct integrals of the spaces $(x,zL). The set R of all members of 3 of
the formy — =,/ for r in e is readily seen to be linear and pervasive. Moreover it is closed
with respect to multiplication by bounded measurable functions of y which vanish outside
sets of finite measure.
By a result in direct integral theory then R is dense in the unique maximal pervasive linear
subset of 3 containing R. Call this maximal set X. It is easy to see that y —= UYL is
measurable with respect to X. We take X then as $([ UYL du(y)).

It is an immediate consequence of the Fubini Theorem that the member of $(UM)
defined by r € & has the same norm as the member of X defined by r. Thus we have a
norm preserving linear map of a dense subspace of $(UM)on the dense subspace R of X =

$([ UYL du(y)). This extends to a unitary map of one space on the other which can be
seen without difficulty to set up the desired unitary equivalence.
Corollary (1.2.28)[11]: Let the regular representation of G be decomposed as a direct
integral of representations y, . Then the regular representation of ® is a direct integral of the
representations U™,

The decomposition of the regular representation of a group defined by a decomposition
of the regular representation of a subgroup has been noted by Godement [9] for the case in
which the subgroup is Abelian and the decomposition is into one dimensional parts.

Let 90t be a separable locally compact space and let ,u be a finite measure in 9. Let
there be given an equivalence relation in 9t. Let the equivalence classes form a set Y and for
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each x € Mletr(x) € Y denote the equivalence class to which x belongs. Following
Rohlin [38] we shall say that the equivalence relation is measurable if there exists a countable
family E, , E,, ...of subsets of Y such that r~1(E;) is measurable for each i and such that each
point y of Y is the intersection of the E; which contain it. We shall need a lemma asserting
that ,u may be "decomposed” as an integral over Y of measures p, concentrated in the
various equivalence classes.
Lemma (1.2.29)[11]: Let ji be the measure in Y such that E € Y is measurable if and only
if r—1 (E) is u measurable and such that i(E) = u(r~1(E)).
Then for each y in Y there exists a finite Borel measure u, in M such that p, (M —
r({yh) =0and [f(y) [ gC)du(x) d™(y = [ fr(x))g(x) du(x) whenever f €
L1 (v, i) and g is bounded and measurable on 9t.

We shall not stop to give a proof of this lemma. In one form or another it has been
showd in a number of places.

See for example von Neumann [34], Halmos [23], [24], Dieudonne [13], and Rohlin
[38]. The formulation given here has been influenced by conversations on the subject with R.
Go dement and a reading of a joint manuscript of Godement and N. Bourbaki. The Godement
Bourbaki treatment will presumably appear in a subsequent volume of N. Bourbaki's well
known treatise.

We shall apply Lemma (1.2.29) when 9t is the homogeneous space /G and p is a
quasi invariant measure in ®/G. We shall need to know that the u,, are also quasi invariant
and devote to a proof of this fact.

Lemma (1.2.30)[11]: Let u, and u, be Borel measures in the separable locally compact
spaces i, and M, . Let r, Y, andr,, Y, define measurable equivalence relations in
i, and W, respectively.
LetY = Y, XY, and let r, where r(x; X x,) =r(x;),r(x,) be the product equivalence
relation in 9t; and Mt,. Then r is measurable and in the decomposition of u; X u,by Lemma
(1.2.29) we may take (uy)y X (1) for (uy X pz)y.

Proof: The proof results from writing down the defining equation of (u; X u,),and making
a few obvious manipulations.
Lemma (1.2.31)[11]: Let u, r,Y and it be as in Lemma(1.2.29) and let t be a
homeomorphism of Mwith itself such that r([x]t) = 7(x) for all x in M. Let u*(E) =

u([E]t). Then in decomposing u* by Lemma(1.2.29) (u'),, may be taken to be (uy)t
Lemma (1.2.32)[11]: Let u, r,Y Let and 90t be as in Lemma (1.2.29) and let k be a non
negative function on Mt which is u summable. v be the measure whose Radon-Nikodym
derivative with respect to ,u is k. Then ¥ is absolutely continuous with respect to [jithe
Radon-Nikodym derivative being A say.

Moreover in the decomposition of vv, may be taken to be that measure, absolutely
continuous with respect to ,, whose Radon-Nikodym derivative is zero or x — k(x)/A(y)
depending upon whether or not A(y) is zero.

Proof: It follows by an easy argument from Lemma (1.2.29) that for all ¥ measurable sets
AT(A) = fu [k(x) dy,(x) dfi(y). Thus U is absolutely continuous and we may take

Ay) = [k(x) dy,, (%) . The defining equations of u,, and v,, lead at once to the equation
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[r020) [ gwdv i) = [ 10 [ gekeIduy ) i)
Thus for fi almost all y,A(y) [g®)dvy(x) = fg(x)k(x)duy(x)dﬁ(x). now A(y) > 0 for
almost oll y . Thus for almost ¥ all y
Jgdvy () = (1/ AW) [ gk d,,, (x).
and the truth of the lemma follows.
Lemma (1.2.33)[11]: LetMt, r, Y and pbe as in Lemma (1.2.29) and let the separable
locally compact group ®act on 9t in such a manner that: (a) x — [x]z is @ homeomorphism
t, foreachz e ®, (b) z — t,is a homomorphism of ® into the group of homeomorphisms of
It onto itself. (¢) [x]z is continuous in both variables together, (d) r([x]z) = r(x) forall z
in® and all x € IN.
(e) is quasi invariant under the action of ®. Then in the decomposition of u
almost all of the .u,, are also quasi invariant under ®.
Proof: Let v be any finite quasi invariant measure in ®. Let M, =M XGandY, = Y X ©.
Forall x,z € M, let ry(x,z) = r(x),zandlet (x,z)t = [x]z,z.
Then r,, is @ measurable equivalence relation and t is a self homeomorphism
of M, No. Since the hypotheses of Lemma (1.2.31) are clearly satisfied we may, in de-
composing by Lemma (1.2.29),choose [(1 X v)'],, as ((u X v),,)". By Lemma (1.2.30),

we may choose (,uy X vz) for (uXv),, where v, is a measure concentrated in the point z
and such that v,({z}) = 1. On the other hand it is evident that (u, x vz)t = (1y)? X v,

Thus[(u x v)*],,, may be taken as (uy)z x v, Now(u x v)t is readily seen to be absolutely
continuous with respect to X v . X v because of the quasi invariance of u. By Lemma
(1.2.32) for fi X v almost all pairs y, z, the measure (u,)* X v, is absolutely continuous with

respect to(p, X v,) .
Thus for almost all y he measure(uy)zis absolutely continuous with respect to ., for

almost all z. But for fixed y the set of all z for which (uy)z is absolutely continuous with
respect to u,, is closed under multiplication. But the v null sets of ® are just those of Haar
measure zero and it is easily seen that a multiplicatively closed subset of a group cannot have
a complement of Haar measure zero unless the subset is the whole group.Thus for almost all
Y, .Uy invariant.

We are now in a position to show generalizations of Theorems (1.2.18) and (1.2.19) for
the case in which the closed subgroups G,and G, are not necessarily discretely related. On
the other hand we may not allow completely general pairsG,, G,.They must be related in such
a manner that almost all of the orbits in &/G, under the action of G, form the equivalence
classes of a measurable equivalence relation. In any case we can of course find a countable
set E4, E,, ... of Borel unions of orbits which generates (modulo null sets) the a field of all
measurable unions of orbits.

The unique equivalence relation r such that r(x) = r(y) if and only if x and y are in the
same sets E; will be measurable and this measurable equivalence relation will define a
decomposition of the quasi invariant measure into smaller quasi invariant parts. This will
lead in turn to a decomposition of U restricted to G,.
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However the equivalence classes may be unions of many orbits instead of single
orbits. When this happens the components of the decomposition of UX% will not be
associated with single double cosets and will not be identifiable as induced representations of
G, as in Theorem (1.2.18). In fact at the present time we know little or nothing about the
nature of these components. Presumably of course the theory of the decomposition of
measures into ergodic parts can be used to show that all of these components are imprimitive
with respect to ergodic but not necessarily transitive systems of imprimitivity. But as
indicated in [28] we know very little about non transitive systems of imprimitivity. Just as we
did in [28] then we restrict ourselves to the case in which this phenomenon of non transitive
ergodicity does not arise.

Specifically we define the closed subgroups G, and G, of the separable locally compact
group to be regularly related if there exists a sequence Ey, E,, E,, ... of measurable subsets
of® each of which is a union of G; : G, double cosets such that E, has Haar measure zero
and each double coset not in E|, is the intersection of the E; which contain it. Because of the
correspondence between orbits of ®/G;, under G, and double G, : G, cosets it is clear that
G, and G, are regularly related if and only if the orbits outside of a certain set of measure
zero form the equivalence classes of a measurable equivalence relation.

Foreach x € ® let s(x) denote the G, : G,double coset to which x belongs.

If v is any finite measure in Gwith the same null sets as Haar measure we

May define a measurev, in D, the set of all G; : G, double cosets, by letting

vo(E) = v(sI(E)) whenever E is such that s~1(E) is measurable. Such a measure we
shall call an admissible measure in ©. Clearly any two such have the same null sets. In terms
of these notions we may state.

Theorem (1.2.34)[11]: Let U™ be the representation of the separable locally compact group
® induced by the representation L of the closed subgroup G, of ®. Let G, be a second closed
subgroup of ® and suppose that G, and G, are regularly related.

For each x consider the subgroup G, N (x71G,x) of G, and let xV denote the
Representation of G, induced by the representation n — L, -1 of this subgroup.

Then xV is determined to within equivalence by the double coset G;xG, = s(x) to which x
belongs and we may write xV = DV where D = s(x). Finally U* restricted to G, is a
direct integral over D, with respect to any admissible measure in D, of the representations
DV.

Proof: Given an admissible measure v, in D let v be the generating measure in ®and let , u
be the quasi invariant measure in /G, defined by the equationu(E) = v(h™1(E)). For each
zin ®/G,let r(x) = s(h™1(2)). Then since G, and G, are regularly related r is a regular
equivalence relation.

Applying Lemma (1.2.19) we find that u is an integral of measures uD, where D € D, with
respect to the measure v, in . Each is concentrated in the orbit »=*(D) and by Lemma
(1.2.33) is quasi invariant. We define uD as the $. of # 6 where C = r(D) and § is the set
of all functions f from D to Upep$p such that f(D) € $Hp for all D and ||f]|?is v,
summable on D.

We shall exhibit a natural unitary map of $(u,.) onto a pervasive maximal linear subset of
&and then show that this direct integral decomposition of $(u,.) yields the desired
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decomposition of UL. Let f be any function in $(uye). Then [[If ()|l au(z)dvy(D) =
[IIfCOII? du(z) < oo . Thus for almost all D the restriction f;, of f to D is a member of §,,.
Moreover the function from D to Upep$pdefined as f, or zero according to whether or
not f, € $p is a member of F with the same norm as f. Let us denote this member of & by
T(f). Then (T(f))p = fp foralmost all D. Let X be the range of T. X is obviously linear
and complete.

Moreover it is closed under multiplication by bounded Borel functions in D.

Thus in order to show it maximal linear and pervasive it suffices to show it pervasive. In
order to do this observe first that it is easy to show that there exists a sequence f, f5, ... of
continuous members of $(U%) such that for each x € & the f,(x) are dense in $H(L). Indeed
the proof is carried through more or less explicitly in the latter part of the proof of Theorem
(1.2.13). Now let g,,g,,... be a dense subset of the continuous complex valued functions
with compact support on /G,, and letg’(x) = g;(h(x)). We leave it. To the reader to

show that any sequence containing all of the g;f; is pervading for X. Finally let nbe an
element of G, and consider the operator”Uﬁ. It takes f € H(uy,e)into the function x —

f(xn)y/p(xn)/p(x) Where p is a p-function associated with ,u. Thus TH*UST ™! is the
operator defined in X by the family of operators D —»” A, where (° A,fp)(x) =

foem)/p(xn) /p(x).

Let (° B,fp)(x) = fp(xn)Ap(h(x),n) where A, is a A-function associated with the
measurey, . Since Uy is unitary it follows that DA, is unitary for almost all D and hence
that DA, is for almost all D the same as DB, -It follows at once that the representation u,,. is
unitary equivalent to the direct integral of the Representations n — DB, and by
Lemma(1.2.17) that each is unitary equivalent to xV for all x € D.Thus the Theorem is
showd.

Theorem (1.2.35)[11]: Let G, and G, be regularly related closed subgroups of the separable
locally compact group ® and let L and M be representations of G, and G, respectively. For
each x,y € & x & consider the representations s — Lygy-1ands — M,.,-1 of the

subgroup (x~1G,x) N (y~1G,y) of ®. Let us denote their Kronecker product by N*¥ and
form the induced representation UN*Y of &. Then UN*Y is determined to within unitary
equivalence by the double coset in question. Finally U* @ U™ is unitary equivalent to the
direct integral of the UP with Respect to any admissible measure in the set D of double
G,: G, cosets.

Proof: The deduction of Theorem (1.2.35) from Theorem (1.2.34) is almost exactly the same
as the deduction of Theorem (1.2.19)from Theorem (1.2.18).

We turn now to our generalization of Theorem(1.2.22) deriving a formula for
J(UL; UM) in the case in which G, and G, are only assumed to be regularly related. Just as
before we base the derivation on an analysis of the Kronecker product of U* and UM,
However there are some important differences which necessitate a more elaborate argument.
Let us introduce the notation n, (U) to denote the number of times that The representation U
contains the identity representation as a discrete direct summatid.
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Then J(UL, UM) = n,(U* @ UM). Let Dy, D,, ... denote the G, : G, double cosets in G, if any
exist, which are of measure different from zero and let D" denote the set of all G;: G, double
cosets which are of measure zero. Then by Theorem (1.2.35) we have n, (U ® UM) =

Yin(UDy) + ny(J, UP dv(D) ) where v is any admissible measure in D.
Now n, (U?) may be computed for all D just as it was in the proof of Theorem (1.2.20). Thus

we are reduced to finding out how n,; ([, U” dv(D) ) depends upon the n, (U®).
Lemma (1.2.36)[11]: LetU = | Yuav(y) D€ adirect integral of the representations yy of the

separable locally compact group ®. Let the Borel measure space Y, v be free of atoms. Then
the set of all y for whichn; ('U) > 0 is measurable.

If this set is of measure zero then n, (U) = 0. If this set is of measure greater than zero then
ny (U) = co.

Proof: We remark first that we need only consider the case in which all $('U) have the same
dimension. Thus as in the proof of Theorem (1.2.27) we may suppose that all of the vy act in
a fixed Hilbert space,$, say, and that $(U) is the set of all square summable weakly
measurable functions from Y to $,. For each y € Y let M, denote the maximal subspace of
$o on which vy is the identity and let yg denote the projection on I,

If we can show that (yE (v),w) is measurable in y for all v and w in $, the truth of the
lemma will follow. Indeed let ¢,, ¢, ...oe a complete orthonormal basis for $, and suppose
that the measurability in question has been established.

Thenn,('U) = 0if and only if YE = 0that is if and only if (YE(¢;),¢;) = 0for all i
and j. Thus the set where n;(YU) = 0 is the intersection of countably many measurable sets
and hence is measurable itself.

Suppose that the set where n,('U) > 0 has measure zero. Let f be any member of the
subspace of $(U) on which U is the identity. Then for each x in ®, U, (f(y)) = f(y) for
almostall yinY,

Using the separability of ® and the continuity of YU, in x we see that for almost all
v, U, (f¥) = f(y) = f(y) forall x. Thus E(f(y)) = f(y) foralmostally. But YE=0
for almost all y. Thus f(y) = 0. for almost all y. Thus n;(U) = 0. Suppose now
that n, (U) > 0 on a set of positive measure. Since Y is atom free and countably generated
there exist countably many disjoint measurable sets Y;, Y, ... each of positive measure and
each consisting entirely of points y for which n,(U) > 0.LetY E; = E fory € Y; and let
E; = 0fory & Y, Then f - gwhere g(y) = vE;(f(y)) defines . a non zero projection
E;foreachi = 1,2,... Since the ranges of these projections are linearly independent and
since U is the identity on each it follows that n,(U) = oo. To show that (PE(v),w) is
indeed measurable and thus complete the proof of The lemma we proceed as follows. First
choose s; , 55, ... dense in ©®.

For each choice of y €Y,v and s; it follows from the mean ergodic Theorem that

(v+Y Ug;(v) + Uszj(v) + .Y U (v))/(n + 1) converges with increasing nto” Eg(v)

where” Eg; is the projection on the one space of the single operator Ug; . It follows at once
that (Eg(v), w) is measurable in 'y for each j, v and w. Now it is easy to see that”E is for
each y simply the projection on the intersection of the ranges of the Eg Let E,, be the
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projection of the of the intersection ranges of Ey;, Egq,...Eg, . It is clear that (VE,(v), w)
tends to (E(v),w) as n tends to co. Thus we need only show that (E,, (v), w)is measurable for
each n; or more generally that if y - E; and y — E, are families of projections such that
(E;(v),w) and (E,(v),w)are measurable in y then (YE(v),w) is also measurable in y where
for all y, E5 is the projection on the intersections of the ranges of E;, and 'E,. To show
This let v,,,v,, ... be a dense subset of $,. Then the range of' E; is the orthogonal
complement of the sequence (I — E;)(vy),U-YE,)(vy), U-YE,)(v,), U-YE;)(vy),. ..
.LetYE, Dbe the projection of the orthogonal complement of the first n terms of this
sequence.

Then (PE,(v),w) tends to (E;(v),w) as n tends to oo for all v and w in $,. We need only
show then that (YF,(v),w) is measurable for each n. This however can easily be established
by induction on n.

As an immediate consequence of this lemma and the remarks preceding it we have [22]:
Theorem (1.2.37)[11]: Let G;,G,,®, L and M be as in Theorem (1.2.36). For each x and y
in® let J(L, M, X, y) be defined as in Theorem (1.2.36). Then J(L, M, X, y) depends only
upon the double coset D = D(x,y) = G,xy 1G, to which xy~! belongs So that we may
write J(L, M, D). Moreover whether or not (x~1G;x) n(y~1G,y) is such that G/
((x71Gyx) n (y~1G,y)) admits a finite invariant measure depends only on this double coset.

Let D" be the set of all double cosets D such that (a) afinite invariant measure does
exist, (b) J(L, M, D) > 0 (c) D is of measure zero. Let D, ,D, ... be the double cosets of
positive measure for which a finite invariant measure does exist. Then if D" has Haar
Measure different from zero we have J(U%, UM) ... o and if D" is of Haar measure zero
then J(UL, UM) = X, J(L, M, D;).

Let G, and G, be separable locally compact groups and let G, be Abelian. Let there be
Given a homomorphism of G, into the group of automorphisms of G, and let us denote the
map of x e G; under the automorphism associated with y € G, by y[x]. We assume that
x,y — y[x] is continuous in both variables. Finally let ® be the set of all pairs x, y with x €
G,y € G, and let (x1,y1)(x2,V2) = (x1y1[x2], y1y2) . It may be verified without
difficulty that Gunder this operation and with the Cartesian product topology is a locally
compact separable topological group. Following Malcev we call ® the semi direct product of
G,and G, with respect to the given homomorphism. In [28] we have applied the principal
Theorem to give an analysis of the irreducible representations of Such semi direct products.
The discussion given there turns out to have been rather too concise and since it was further
obscured by several confusing typo graphical errors it seems well to give a fuller version
here. We shall proceed somewhat differently this time and make use of Theorem(1.2.34) .

We remark first of all that the set of all x,e where x € G, and e is the identity is a
closed normal subgroup of ® and is isomorphic in a natural manner to G,. Similarly the set
of all e, y fory € G, is a closed subgroup of ® isomorphic in a natural manner to G,. We
shall identify G, and G, with the corresponding subgroups. Since (x,e)(e,y) = (x,y) for
all x € G; and y € G, it follows at once that The representation x,y —» Uy, of ®. is
determined by its restrictions to G, and G,. Indeed if V(x —» V,) and W(y - Wy) denote
these restrictions thenU, ,, = V. W, Conversely if V and W are arbitrary representations of
G, and G, respectively which act in the same Hilbert space then an easy calculation shows
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that x,y — V,W, defines a representation of ® if and only if VW, W,_; =V, for all
x,y € ®. Now by the Stone-Neumark-Ambrose-Godement spectral resolution Theorem
[40], [27], [12], [20].V is determined by a projection valued measure E — Pg.defined on
theBoral subset of the character group G, of G,. It is readily verified that VV and W satisfy the
above identity if and only if P and W satisfy Wy, PgW,,_; = Pygp, forally € G, and all

Borel sets E in G, . Here [X], is defined by the equation (x, [£]y) = (y[x],X). We leave it
to the reader to verify that X,y — [x]y has the to be expected elementary properties. In the
terminology of [19] then P is a system of imprimitivity for W.

Consider the action of G, on G,. If the projection valued measure P is concentrated in
one of the orbits of G; under G, let be any member of this orbit and let G, be the subgroup
ofally € G,forwhich [X,], = X,.

Theny — [%,], sets up a one-to-one Borel set preserving correspondence between the
points of the orbit and the points of the homogeneous space G, /Gg, . In this way P becomes a
system of imprimitivity for W based on the homogeneous space G,/Gg,and we may apply
Theorem 2 of [19] to conclude that W is of the form G,UX where L is a representation of
Gy .

’ Under certain often verifiable conditions it may be shown that U cannot be irreducible
unless P is indeed concentrated in a single orbit.

Specifically let us say that ® a regular semi direct product of G;and G, if G, contains

a countable family E; , E,, ... of Borel sets each a union of orbits such that every orbit in G, is
the intersection of the E; which contain it. As indicated in28] ] it is easy to show that
whenever® is a regular semi direct product of G; and G, then a necessary condition for the
irreducibility of the representation associated with P and W Is that there exist an
orbit D of G; under G, such that P, = 0 whenever E N ® = 0. Combining these
considerations with Theorem 2 0f19] ] and the remarks about reducibility in = 6 0f19]] we
may conclude the truth of
Theorem (1.2.38)[11]: Let ® be a regular semi direct product of the separable locally
compact groups G4, and G,. LetG, be Abelian and let G, be its character group.
From each orbit D of G, under the action of G, choose an element £, and let G, denote the
set of all y € G, such that [%,], = Xo.Let U(x,y - Uy, = V,W,) be an arbitrary
irreducible representation of . Then the projection valued measure defined by V in G, is
concentrated in a single orbitDand W is the representation UX of G, induced by an
irreducible

Representation of G, . Every pair consisting of an orbit © and an irreducible
representation L of G, arises from an irreducible representation U of ® in this way.

Finally two irreducible representations of ® are unitary equivalent if and only if the
corresponding orbits are identical and the corresponding representations of G, are unitary
equivalent.

We may also describe the representations of ® as follows.

Theorem (1.2.39)[11]: Conserving the notation of Theorem(1.2.38) let D be an arbitrary
orbit in G,and let L be an arbitrary irreducible representation of G,. Let . be the set of all
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X,y withy € G, . Let M be the representation of &, defined by the equation M, ,, (x,%,)L,.
Then the representation UM of & induced by the representation M of ®,, is irreducible and in
the unitary equivalence class associated with D and L.
Proof: Let us apply Theorem(1.2.34) to study the restrictions V and W of UM to G, and G,
respectively. We verify without difficulty that the ®,, G; double cosets are in a natural one to
one correspondence with the right G; /®, D cosets and that ®, and G, are regularly related.
Moreover the representation of G, associated with the right G, /G,, coset containingy € G,
is the one dimensional representation defined by the member [X,], of G,.

Thus V is adirect integral of characters belonging to the orbit © and it follows easily
that P is concentrated in ©. Proceeding now to W we observe that there is only one 6,: U,
double coset. Since &, N U, = G, it follows now from Theorem(1.2.34) (actually from
Theorem(1.2.18) that W is simply M.
All statements of the Theorem now follow from the preceding discussion.
Corollary (1.2.40)[11]:. If G, is Abelian then every irreducible representation of the regular
semi direct product ®is monomial; that is, is of the form UM where M is a one dimensional
representation of a subgroup of ®.
Example (1.2.41)[11]: Let G, be the additive group of all real numbers and let G, be The
multiplicative group of all positive real numbers. Let y[x] = xo y where 0 denotes
ordinary real number multiplication. Then ® is the so called "ax + b group" of linear
transformations of the line.
G, is again the additive group of the real numbers and there are just three orbits:D, the set of
all negatiye numbers D,the origin, and Dsthe set of all positive numbers. G, and GG.,
consist of the identity alone; G.,is the, whole of G,.
Applying Theorems (1.2.38)and(1.2.39) we see that in addition to the obvious one
dimensional representations there are just two other irreducible representations and that each
is infinite dimensional. Let L, be the one dimensional representation of G, associated with
any member of D,and let L, be similarly defined with respect to®D5. Then the two infinite
dimensional representations of ® are the monomial representations U’ and Uz,
Example(1.2.42)[11]: Let G, be the additive group of all complex numbers and letG, be the
multiplicative group of complex numbers of modulus one. Let y[x] = x o y where 0
denotes ordinary multiplication of complex numbers. Then ® is group of all Euclidean
motions of the plane. G, is again the additive group of complex numbers and G, acts on G,
just as it does on G;. Thus the orbits are the circles with center at the origin. Let D,. be the
orbit of radius r. If r > 0 then G,_ is theidentity. If r = 0then G, = G,.
Applying Theorems (1.2.38) and (1.2.39) we see that in addition to the obvious one
dimensional representations there is a continuum of infinite dimensional irreducible
representations one for each r > 0.
These exhaust the irreducible representations of ®. The irreducible representation associated
withr > 0is Ul where L is a one dimensional representation of G, associated with a
member of G, of absolute value r.
Example (1.2.43)[11]: Let G, be the additive group of the plane and let G, be the

multiplicative group of all two by two real matrices of the form (Z 1I<a)where a > 0,
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If X=%;,x,and y = (Z 1I<a) let [X]y = Xia +X,b,%,/a. Then y[x] is uniquely

defined and € is a subgroup of the group of area preserving homeomorphisms of the plane.
There are five orbits of G, under G, ; D,, is the positive real axis, D, is the negative real
axis, D5 is the origin alone, D, is the upper half plane and Ds is the lower half plane. G, and
G,, are the subgroup of G, defined by setting a = 1.G,, is the whole of G,and G,, and G,

are the identity. Noting that G, is isomorphic to the group of Example (1.2.41) we conclude
easily that® has a one parameter family of one dimensional representations and two infinite
dimensional irreducible representations associated with the orbit D5 . Each of the orbits D,
and D, has associated with it a one parameter family of irreducible infinite dimensional
representations. D, and Dy are associated with exactly one infinite dimensional irreducible
representation each.

Example (1.2.44)[11]: Let G, be as in Example (1.2.43) and let G, be the additive group of
integers. If y is an integer and x a complex number let y[x] be the product z¥x where z is
some fixed complex number of modulus one no power of which is one. In this case there are
continuum many orbits on each circle with center at the origin in G,. On the other hand the
only invariant Borel sets are essentially unions of circles. Thus ® is not regular and
Theorems(1.2.38) and (1.2.39) do not apply. We shall study elsewhere the pathology
presented by the representations of This group.

A few remarks are in order concerning the connection between Theorems (1.2.38) and
(1.2.39). For finite groups results somewhat more general than Theorems(1.2.38) and(1.2.39)
are classical. See for example Seitz [39], Shoda and the earlier work of Frobenius and Schur.

For infinite dimensional representations of non finite locally compact groups the only
work we know of deals with particular groups.

Wigner in [8] shows that the study of the representations of the inhomogeneous
Lorentz group may be reduced to the study of the representations of the homogeneous
Lorentz group and certain of its subgroups.

In doing so he essentially shows Theorem (1.2.38) and /or(1.2.39) for the special case
in which G4 is a vector group, G, is the homogeneous Lorentz group and y[x] is the result of
transforming the point x in G; by the Lorentz transformation y. He also discusses Example
(1.2.43) above. The representations of Example (1.2.41) above have been determined by
Gelfand and Neumark [15] They assert that their method can be used to determine the
representations of any solvable Lie group but do not formulate a general Theorem.

Actually the analysis of the group of Example (1.2.41) is considerably simpler than
that of the general regular semi direct product because of the fact that in this case every G, is
either the identity or the whole of G,. Whenever this happens the representations may be
deduced from Theorem 2 of [27] and there is no need for the more general Theorem 2 of [28].
It should also be pointed out that there exist solvable Lie groups which are irregular semi
direct products. For these one can show that there are many more irreducible representations
than those described in Theorems(1.2.38) and(1.2.39) . Moreover their nature is such that
one can well despair of ever obtaining a classification for them as complete and satisfying as
that available for regular semi direct products in general and the group of Example (1.2.41) in
particular. In Wigner's section the "factor representations” as well as the irreducible
representations are discussed. Here by a factor representation is meant a representation U
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such that the weakly closed ring generated by the operators U, has only multiples of the
identity in its center and hence is a "factor" in the sense of the definition of Murray and von
Neumann. It has been pointed out to us by I. Kaplansky that our discussion of irreducible
representations of regular semi direct products applies almost without change to factor
representations.

One still finds that the projection valued measure must be confined to a single orbit and that
V is of the form U". The only change lies in the fact that L need only be a factor
representation itself and need not be irreducible. In particular it is easy to show the following
Theorem (1.2.45)[11]: Let ®? be a regular semi direct product of G, and G,. Suppose that
G, and its closed subgroups have no factor representations except those of type I. Then ®
has no factor representations that are not of type I. We applying Theorem (1.2.35) to
compute the Kronecker products of the infinite dimensional irreducible representations in
Examples (1.2.41) and (1.2.43). The computations themselves are straightforward and we
shall content ourselves here with an enumeration of results.

Example (1.2.46)[11]: U@ U’z is a direct integral over G, of replicas of UL, Ut @ U1 is
a direct integral over G, of replicas of Uz, UL2@® U’z is the same as U*® U*1. The measure
Is Haar measure in G,. However this is really irrelevant. A direct integral of replicas of the
same irreducible representation is always unitary equivalent to a direct sum of finite or
countably many such replicas.

Example (1.2.47)[11]: Let us denote the irreducible representation associated with the orbit
of radius r by W". Then W™ @ W™ is a direct integral with respect To Haar measure in the

reals mod 2m of the representations W \/ 12 4+ 1¢ + 2y sP. Alternately W Q@ W™ s
the integral over the interval |r; — | < r < nr, + n, with respect to Lebesgue
measure, of the direct sum of two replicas of W,

We shall indicate some of the connections between the theory of induced
representations and the analysis given by Gelfand and Neumark in [16] of the representations
of the group ® of all two by two complex matrices of determinant one. Following Gelfand

and Neumark let us denote by K the set of all elements of ® of the form (Z 1l<a>where

a # 0; by Z the set of all elements of K with a = 1 and by D the set of all elements in K with
b =0. Then K, Z and D are all closed subgroups of ® Moreover Z is a normal subgroup of K
and every element of K is uniquely of the form zd where z € Zandd e D. Thus K is a semi
direct product of the two Abelian groups Z and D. The automorphism of Z induced by
(a b ) inD is (1 b) - (1 azb) Let us denote the one dimensional representations
o 1\a o 1 o 1/

of D by L, L, etc. and let us denote the one dimensional representations of Z by M, M, etc.

Since D is isomorphic in a natural way to the quotient group K/Z each L defines a
representation of K which we shall denote by L'. We shall be concerned with the induced
representations UL, UL and UM of G. The reader will have little difficulty in verifying that
the representations U’ for variable L in D constitute precisely what Gelfand and Neumark

call the "principal series" of irreducible representations of ® and that U ™when M is the
trivial representation of Z is what Gelfand and Neumark call the quasi regular representation
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of ®. Among the results of Gelfand and Neumark on the principal series and the quasi regular
representation are the following.

I. Every member of the principal series is irreducible.

1. U and U, are unitary equivalent if and only if either L, = L,or L; = L,.

I11. The quasi regular representation is a direct integral over the character group of D of the
representations U,

IV. The regular representation of ® is a direct integral over the character group of D of

fold repetitions of UL’

We shall obtain I and 11l as consequences of our general theory and in addition certain results
not obtained by Gelfand and Neumark. We hope to obtain Il and IV as consequences of
further general Theorems on induced representations, work upon which is now in progress.

A. The representations UL are not only irreducible but restricted to the subgroup K are
irreducible representations of K.

Proof: An easy calculation shows that there are only two K: K double cosets in®. Since K
itself has Haar measure zero there is effectively only one double coset.

Taking (_01 (1)) as the x of Theorem (1.2.45) we find that x"*Kx N K is D and thatn —

L', nx~1is the representation L of D. Thus U restricted to K is the representation KV of K

induced by the representation L of D. Applying Theorem(1.2.19) again we find that KU
restricted to Z is the representation of Z induced by the one dimensional representation of the
identity subgroup; that is the regular representation of Z. On the other hand there are in Z
under D exactly two orbits; zero and everything else. The projection valued measure induced
by the regular representation gives measure zero to the origin. Thus this measure is
concentrated in a single orbit. Moreover the subgroup of D which leaves a point in this orbit
fixed is the two element center C of . Applying Theorem (1.2.18) a third time and
observing that there is only one D: D double coset in K other than D itself and that D has

measure zero we find that K ULre§tricted to D is the representation of D induced by the
restietion of LtoC. Thus KY" is one of the two infinite dimensional irreducible

representations of K associated with the non finite orbit in Z.
B. (Il above) If M is the identity representation of Z then UM is a direct integral over D of
the representations U L" the measure being Haar measure in D.
Theorem (1.2.48)[11]: Let G; S G, be closed subgroups of the separable locally compact

group®. Let L be a representation of G, and letM = G, V" . Then V" and 6 U are
unitary equivalent representations of ®.
When G, is the subgroup of ® which contains only the identity and L is the trivial one

dimensional representation of G, then as is easily seen ® Y Yis the regular representation of
®. From this remark and Theorem (1.2.48) we deduce at once:

Proof: UM is unitary equivalent to UY where V = K" is the representation of K induced

by the representation M of Z. Since M is the identity the space of K'Y " may be identified with
22(D). Thus M is the representation of K defined, via the natural homomorphism of K on D,
by the regular representation of D. It follows from the theory of local compact Abelian
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groups however that the regular representation of D is simply a direct integral with respect to
Haar measure in D of the irreducible representations L of D. The representation V of K is
correspondingly the direct integral of the L'. Finally then by Theorem (1.2.48), UM = UV is

a direct integral of the UL as stated.

We saw in the proof of A that K has only two infinite dimensional irreducible
representations. Let us denote the one associated with the identity representation of C by
W, and the other by W,. Then we have

(C) If M is any irreducible representation of Z other than the identity then UM is isomorphic
to the direct sum of U"* and U%= . In particular UM (for M not the identity) is independent
of M..

Proof. As in B UM is unitary equivalent to UY where V. = KUY". When M is not the identity

it follows from Theorem (1.2.34) that KU" restricted to Z is a direct integral of all one
dimensional representation of Z which are distinct from the identity. Thus the projection

valued measure associated with KU™” is concentrated in the orbit of Z consisting of the
complement of the origin.

On the other hand KY" restricted to D is the regular representation of D and hence the
representation of D induced by the regular representation of C.
Now the regular representation of C is of course simply the direct sum of its two irreducible

representations. Thus KU" is the direct sum of the two infinite dimensional irreducible
representations W, and W, of K and the truth of our assertions follow.

D. If L is a one dimensional representation of D then GY" is unitary equivalent to U1 if L
restricted to C is the identity. Otherwise GU" is unitary equivalent to U"z,
Proof. It follows from Theorem (1.2.48) that ®U" is unitary equivalent to UV

Where V = KU". But KY" was identified in the proof of A as being W;or W, according to
whether or not L on C reduces to the identity.

E. The regular representation of ® is a direct sum of countably many replicas of U"* and
countably many replicas of U"z.

Proof. By the Corollary to Theorem(1.2.27) the regular representation of ® is a direct
integral with respect to Haar measure in D of the U™,

Thus we need only apply D above and remember that a direct integral of replicas of the same
representations is equivalent to a discrete direct sum of the same replicas.

F. Let U1 and U* be any two members of the principal series of irreducible

Representations of ®. If L, and L, are the same when restricted to C then the Kronecker
product U1 ® U2 is unitary equivalent to UW:. If L;and L, are distinct on C then
Ul ® U= is unitary equivalent to Uz,

Proof. As we have already noted there are only two K:K double cosets and one has measure
zero. Applying Theorem(1.2.19) we find at once that U ® U’z is unitary equivalent to
Utilz \We now need only apply D.

In order to complete the considerations in a satisfactory manner we should want to
know more about the two representations U1 and UW=. If we knew how to decompose them
as direct integrals of members of the principal series we would have a complete analysis of
the Kronecker product of any two members of this series as well as of the induced
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representations associated  with the various subgroups of ® that we have considered. E
combined with result IV of Gelfand and Neumark suggest that thedirect sum of U"2and U2
Is either the regular representation itself or a representation which differs from the regular
representation only in the multiplicity of occurrence of its components Just what is the case
we do not know at this writing.

We remark that the Lorentz group is, as is well known, the quotient /C. Because of
this it is easy to derive results about it from results about ®. In particular one can show that
any two members of the principal series of irreducible representations of the Lorentz group
have the same Kronecker product as any other two members.

Let ® be the group of all n by n complex matrices of determinant one and let U be the
subgroup of all unitary matrices in . Gelfand and Neumark in [18] and [19] have discussed
certain relationships between representations of ® and representations of U. We shall show
here that their principal results are corollaries of our Theorems (1.2.18) and (1.2.23) .

Let K be the subgroup of ® consisting of all matrices which vanish below the main diagonal
and let Z be the subgroup of K consisting of all matrices in K which are one on the main
diagonal. Then Z is a normal subgroup of K whose quotient K /Z is isomorphic in a natural
manner to the group D of all diagonal matrices of ®. Every one dimensional representation L
of D thus defines a one dimensional Representation L' of K. We consider the induced
representations UL of ®. These are, just as in the two by two case, the members of what
Gelfand and Neumark call the principal series and have been shown by them in [17] to be
irreducible. Three of the four principal results of [12] slightly reformulated are:

A necessary and sufficient condition that UL restricted to U contain the identity as a

discrete direct summand is that L reduce to the identity on U N D =T. If UX" does contain
the identity it contains it exactly once.

[11. Let M be an irreducible representation of . Then M is contained in UL restricted to 20 if
and only if M restricted to I" contains the restriction of LtoT.

IV. Let M be an irreducible representation of U which is contained in UL restricted to .
Then it is contained exactly as many times as M restricted to r contains the restriction of L to
. Their result Il gives an explicit formula for the generator of the subspace of 55(UL' ) in
Which UL’ reduces to the identity on U. In order to obtain proofs of I, Ill, and IV by our
methods we note first that they may be combined into the following single Theorem.
Theorem (1.2.49)[11]: Let M be an irreducible representation of U. Let L be a one
dimensional representation of D. Then the number of times that UL restricted to U contains
M as a discrete direct summand is equal to the number of times that M restricted to I" contains
L restricted to T..

Proof: Observe that there is only one K: Ul double coset. Indeed let X be any member of ®
and let ¢4, @5, ..... ¢,,. be the vectors 1,0,0... 0; 0,1,0,... 0,0....; 1 Let Y4, y,, ..., ¢, be a
set of orthonormal vectors such that for each i = 1,2,... n; ¥, ...1; span the same space as
X Y(¢p,) ... X Y(¢;)and such that the unique unitary matrix Y such that Y (¢;) = ; has
determinant one. Then XY (@)XW = X(cX (@) + ¢ X (@) = c101 . C100;
Thus XY € KandsinceY € U, X € KU. Applying Theorem (1.2.18) we conclude at once
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that UL restricted to 2 is the Representation of U induced by the representation L’ restricted
to K NU.

ButK NW = F'andT € D. Thus UL restricted to U is the representation of U induced by
L restricted to I' .The truth of the Theorem is now an immediate consequence of
Theorem(1.2.23) .

Corollary (1.2.50)[260]: For each x € ® the vectors f"~*(x) for f™™' € C[_} form a
dense linear sub- space of H(L,_,).

Proof: Note first that if ! € /! and £/~ is defined by the equation f/~?(x) =
fT2(xs) for all x and s in ® then (f" 1) (x) = (f,)""1(x) so that for all f"~2 and s,
(f"Hs € €[ . Thus the set of vectors f™~'(x) for f™t € C/~! and x fixed is
independent of x. Let £, be the orthogonal complement of this set of vectors. Then if v €
9, we have (f""i(x),v) =0 for all f™1 and all x . Thus (f7!(&x),v)) =
(FT (%), (Ly—z)e—1(v)) is zero forall f*~* and x and all ¢ € G.

Hence $,is invariant under the representation L,_,. Let L’._, be the component of L in
$,. Suppose that there exists a non zero member f"™~' of C[ . Then f™~' € ¢/} and we
have a contradiction since the values of f™ 1are all in $, . Thus in order to show that §,; =
0 and complete the proof of the lemma we need only show that when £, # 0 there exists a
non zero member f"* of (/7! . But if none existed then
J (L) e, (fT72(6x)), v) dv(§) would be zero for all x, all v in $(L,_,) and all f™~% in
C, This is readily seen to be impossible.

Corollary (1.2.51)[260]: Let L,_, and M,_, be representations of the closed subgroups
G, and G, of the separable locally compact groups ®, and ®,.,; respectively. Then the
representations &, x 6,.,.Y" """ and 6 U2 X g UMz of G, x G,,, are unitary
equivalent.

Proof: Let T be a member of §(UL—2 x UMr-2) [that is an operator from $(u2UMr-2) to
$(u, UL-2)] whose range is finite dimensional. Then there exist fi, f5, ... f;, € H(#1ULr-2)
and g;,95 ....gn € ,9H(*2UMr-2) such that for each g € ,$H(#2UMr-2) we have T(g*) =
(g9 fr + -+ (g g)f, For each x,x + e € &, X ®,,, we may define an operator
Ar(x,x +¢€) from $HM,_,) to $H(L,_,) as follows. (Ar(x,x+e)((x+ 3€)") =
)(g1(x+€),x+3€)+ -+ f[,(x)(g(x+€),x+3€). We note at once that
Ar@Ex,n(x +€)) = (Lr_2):Ar(x,x + €)(M,_;)y for all x,x+e€ &, x6,,; and all

§m € Gy x Gy Moreover [l|Ar(x,x +e)lII? = 2y (i), £5(0) (g:(x + €), gi(x + €))
and

ITIE = > (e £ (95290
ij
= Zu (f(ﬁ(x),f,-(x))dul(x + 26)) (f(gj(x +€), g;(x + €)du, (x + 26))

-| (Z”m(x),zs-(x)) (9;(x +€),0:x + )y X 1) (x +2€)

- f A7 Ce,x + 1117 d (i X 1) (x + 26).
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Corollary (1.2.52)[260]: Let U and U + € be representations of the separable locally
compact group ®. Then J(U, U + €) (D(U)) = I(°U,° U + ¢€) and this number is equal to the
number of times that U @ (U + €) contains the identity representation as a discrete direct
summand,; that is the dimension of the subspace of $(U) in which all U,.z.act as the identity.

Proof. If U,2T = T(U,z +€) then U,2T(U . + e)_l = T which may be written U,2T> =
T or (U®(U + 6))x2(T) = T. Since all steps are reversible the equality of J(U, U + ¢€) to the

dimension of the identity component of UQ(U + €) is established. We now show the
equality of J(U, U + €) and I(°U,° U + €). Let T be any strong intertwining operator for U
and U + €. Let M; be the orthogonal complement of the null space of T and let M; be the
closure of the range of T. Since T is an intertwining operator it follows that M;and M, are

invariant under U and U + e respectively. Let A(v) = (T*(T(¥)*)) . Then A is a self
adjoint operator in $(U + €) which commutes with all U,z +¢€ and is completely
continuous. Because of the latter property it has a pure point spectrum and each non zero
value occurs only a finite number of times. It follows that M, is a direct sum of finite
dimensional invariant subspaces and a similar argument shows that the same is true of M;.
Thus M, < (H(U +¢€))r and M, S(&(U))f . Hence every strong intertwining operator
carries (H(U +¢€))f into (H(U)),fand is zero on the orthogonal complement of (H(U +
€))s it follows at once thatJ(°UL°U+¢€) = J(U; U+e¢). Finally it is evident that
both I(°U,° U + ¢) and J(°U,° U + €)are equal to ¥,,n,m,, Where the sum is over all finite
dimensional irreducible representations of ® which appear as components of either
°U or °U + €, and where n,, (resp.m,,) is the multiplicity of occurrence of W in °U (resp.
U + e).
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Chapter 2

Kadec Norms and Borel Sets
We characterize the existence of Kadec type renormings in the spirit of the new results
for LUR spaces by Molto, Orihuela and Troyanski. It is also shown that a non-coincidence of
norm-Borel and weak-Borel sets in a function space does not simply that the duality map is
non-Borel.

Section (2.1): Borel Sets in a Banach Space

(X, I-[l) will denote a Banach space, X* its dual, w and w* the weak and weak*
topologies respectively, By (resp. By+) denotes the unit ball of X (resp. X*). Sy will be the
unit sphere of X. We shall also consider topologies on X of convergence on some subsets of
the dual space. A subset of By- is said to be norming (resp. quasi-norming) if its w* —
closed convex envelope is By- (resp. if the envelope contains an open ball centered at the
origin).

A norm ||| on X is said to have the Kadec property when the weak and norm
topologies coincide on the unit sphere. A norm is said to be locallyuniformly rotund (LUR) if
for every sequence (x,,)in the unit sphere and for every point x in the unit sphere such that
lim,||x, + x|| = 2 the sequence (x,,) converges to x in norm. LUR norms have the Kadec
property. For the proof of this fact other properties of Banach spaces having an equivalent
LUR norm see [47]. There exist Banach space shaving a Kadec norm and admitting no
equivalent LUR norm [54].

Edgar [48] showd that in a Banach space which admits an equivalent Kadec norm the
Borel o —algebras generated by the weak and norm topologies coincide. He also noted that
an analogous result also holds when the Kadec property holds for the weak™ topology.
Schachermayer [49] showd that a Banach space X that has an equivalent Kadec norm is a
Borel set in (X**,w*). Talagrand [69] showed that the previous two results are not true for
general Banach spaces, but he showd [68] that for subspaces of weakly compactly generated
spaces the Borel sets for the topology of point wise convergence on a quasi-norming subset of
the dual space and the norm Borel sets are the same.

Jayne, Namioka and Rogers [58] introduced the nation of a countable cover by sets of
small local d-diameter (SLD) (see Definition (2.1.3)) for a topological space with respect to
some metric d and they noted that if a Banach space X has an equivalent Kadec norm then
(X,w) has SLD with respect to the norm, which implies the coincidence of the Borel sets for
the norm and weak topologies. In fact, property SLD implies the coincidence of the Borel sets
for the original topology and the metric in a wider topological context .Oncina [65] has made
adeep study of property SLD showing that a Banach space with SLD for the weak topology
with respect to the norm is Borel set in its bidual . Another approach to the coineidence of the
Borel set and related properties has been given by Hansel [53] using the nation of descriptive
topological space. In the context of a Banach space endowed with its weak topology,
Hansell's nation of descriptive space is equivalent to property SLD, as pointed out by Molto,
Orihuela, Troyanski and Valdivia [53].

Molto, Orihuela, and Troyanski[62] have characterized the Banach spaces which admit
an equivalent LUR norm as those spaces X such that (X, w) satisfies a special case of norm
SLD: X has an equivalent LUR norm if and only if (X, w) satisfies Definition (2.1.3) below

43



and the weak neighborhood there is s slice (the intersection with an open half space). See also
the comments after Theorem (2.1.14).

We show that all the above mentioned positive results on coincidence of Borel o-
algerbras and the Borel nature of a Banach space in its bidual stem from a common
topological principle which can be used to characterize the existence of Kadec type norms in
a Banach space.

We introduce a useful condition Definition (2.1.1) for a couple of topologies that gives
a natural approach to the study of Borel sets Proposition (2.1.5). When one of the topologies
IS given by a metric, our property is equivalent to property SLD Definition (2.1.3),
Proposition (2.1.4).

We use the framework of topological vector spaces to study the relation between
property SLD and the existence of Kadec type equivalent norms. We show that if X is a
Banach space such that (X, w) has SLD then the weak and norm topologies coincide on the
level sets of some positive homogeneous function Theorem (2.1.13). We also characterize the
existence of an equivalent Kadec Theorem (2.1.14) in the spirit of the recents results on LUR
norms by Molto, Orihuela and Troyanski [61]

We apply the previous results to WCD Banach spaces taking advantage of the
existence of a LUR norm to build Kadec norms for topologies weaker than the topology
Theorem (2.1.15) and to show the coincidence of Borel sets improving a result by Talagrand.
As an application to nonmetric topologies we finish by showing that if K is a Radon-
Nikodym compact set then C(K) has an equivalent norm such that the weak and pointwise
topologies coincide on the unit sphere (Theorem (2.1.18).

Parts of the results have been announced in [66]

Actually the idea is implicit in [68]. We recall that a network for some topology is a

family of sets not necessarily opens such that every open set can be written as a union of sets
in the family.
Definition (2.1.1)[43]: Let X be a set, and 7,and 7, two topologies on X. A subset A c X is
said to have property P(t,, T,) if there exists a sequence (A,,) of subsets of X such that the
family (4,, N U) where n € N and U € 7,is a network for t,, that is, for every X € A and
everyV € t; with X € V thereexistn e NandU e t, that X € A, nU c V.

Evidently, if t; c 7, then X has P(t,, 7,), but this case is not interesting. The relevant
case happens when 7, c 74, for instance, in applications to Banach spaces t, and t, will be
the norm and the weak topology respectively. If T, has a countable basis (V},) then X has
P(t,, T,) for any t,, because we can take A,, = V,,.this happens in particular when (X, t,) is
metrizable and separable. In fact, we shall use the property introduced in Definition (2.1.1) to
extend results valid for separable spaces to no separable spaces.

If we take the sequence (4,, N A) we can always suppose that 4,, € A. That means that
property P(t4, t,) only depends on A equipped with the relative topologies.

To check P(t,, T,) for a given A it is enough to verify the above set inclusion for all
the V's belonging to a sub-basis of t;, because then A will have P(z;, ,) with the countable
family of the finite intersections of sets of the sequence (4,,).

The following proposition contains some other elementary consequences of Definition
(2.1.12).
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Proposition (2.1.2)[43]: Let X be v a set, 7;, 7, and tstopologies on X, and A a subset of
X. Then:

(i) If A has P(t4, 7,) and B c A then B has P(t,, T5).

(ii) If A has P(t,, T,) and P(t,, T3) then A has P(t,, 13).

(iii) If every point of A has a t; —basis of neighbourhoods which is made up of t,-
closed sets then the sequence (4,,) in Definition(2.1.1) can be taken to consist of 7,- closed
sets.

(iv) If every set A, of Definition (2.1.1)is 7,-Borel then for every VV € 7, such that A c V,
there is a 7, —Borel set B satisfying A c B c V. In particular, if A is 7, —open , or more
generally, if A is a Gs —set for the t; —topology, then A is 7, —Borel.
Proof: (i) Use the same sequence(4,,).
(ii) If (B,,) is a sequencefor P(t,,13) then it is easy to check that (4, N B,,) satisfies the
condition of Definition(2.1.1) for P(t4, T3).
(iii) Fix X € A. Take V € Twith X € V. Take V, € 7, such that X € V, and ;2 < V. There
exist A, and U € t, suchthat X € A, nU c V,. Thus

XeAPnNUcA,NnU= V.
(iv) For every X € A there exist ny € Nand Uy € 7, such that X’ € A, N Uy < V. Now

we have

X€EA X€EA n=1 ny=n
Where B is clearly in Borel (X, ;).
If A= N;-,V, whereV, € t,we can take t, —Borel sets (B,)suchthat A c B, c V,,. Then
A=N%,B,.

A particularly interesting case occurs when t,is metrizable. In this case the property
introduced in Definition(2.1.1) agrees with the following one given by Jayne, Namioka and
Rogers in [58], which is a special case of their o — fragmentability.

Definition (2.1.3)[43]: Let (X, t)be topological space and let d be a metric on X.T hen X
has a countable cover by sets of small local diameter (SLD) if for every € > 0 there exists a

decomposition
X = ﬂ Xe
n=1

such that for each n € N every point of X has a relative T — neighbourhoodof diameter less
than ¢.

A Banach space X is said to have countable Szlenk index if for every € > 0, there is a
decreasing transfinite countable sequence (C,) of
subsets such that By = U,(C, \ C,+1) and every point of C, \ C,41 has a relative weak
neighbourhood in C, of diameter less than &, These spaces have been considered by Lancien
[61] Clearly, if X has countable Szlenk index, then (X,w) has ||-||- SLD. However, a
separable Banach space X without the Point of Continuity Property does not have countable
Szlenk index but (X, w) has [|:||- SLD.
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Proposition (2.1.4)[43]: Let (X, t)be a topological space and d a metric on X. Then X has a
countable cover by sets of small local diameter if and only if X has P(d, t). Moreover, if the
closed d-balls are t-closed then the stets X in Definition (2.1.3) can be taken to be
differences of t-closed sets.

Proof: If X¢ are the sets of Definition (2.1.3) it is easy to check that the sets(4,,) obtained by

arranging (X,ll/m) into a sequence by a diagonal process satisfy the condition of
nm

Definition (2.1.1).

For the other implication, given € > 0 just define

Xe={X€eA;aU et,X e U, diam (A, NU) < &}.
The "moreover" part is a consequence of Proposition (2.1.2) (iii).
The following result shows the good Borel behavior of a topological space
(X, 1) that has P(d, t) for some appropriate metric d. The statement (a) has already been
noted by Jayne, Namioka and Rogers in [64] and [66], in terms of property SLD.
Proposition (2.1.5)[43]: Let (Y, t)be a topological space and d a metric on Y stronger than
T and such that closed d-balls are t-closed. Let X be a subset of Y having P(d, 7).
(a) Considering X with the inherited topologies we have
Borel(X,7) = Borel(X, d).

(b) If X is d-closed in Y then X € Borel(Y, 7).
Proof: (a) Evidently every T-Borel set is a d-Borel set. Conversely, if V c X is a d-open set
then it has P(d, 7). as closed d-balls are t-closed we can apply Proposition (2.1.2) (iii), (iv) to
conclude that V is t-Borel.
(b) Since X is a Gg-set in (Y, d), the result follows from Proposition (2.1.2) (ii), (iv).

The next corollary embraces the applications of property SLD to Banach spaces by
Jayne, Namioka and Rogers [58], Oncina [65] and Hansell [59] (this last using the notion of
descriptive space) that imshow preceding ones by Edgar [48] and Schachermayer [49] on
Banach spaces admitting Kadec norms. We shall show later that Banach spaces having
P(]|]], ©) are not very different from Banach spaces that admit an equivalent Kadec norm
(Theorem (2.1.13).

Corollary (2.1.6)[43]: let X be a Banach space and t a vector topology weaker than the
norm topology and such that B} is bounded.

(@) If X has P(||*]|, T), then Borel (X, ||:||]) = Borel(X, 1).

(b) If X has P(||*||, w), then X € Borel (X**,w").

Proof: Note that Bf is the unit ball of an equivalent norm on X whose closed balls are 7-
closed. Then apply Proposition(2.1.5) .

Let us remark that BY is bounded, for instance, when 7 is the topology of convergence on a
norming or a quasi-norming subset of X*.

We now give an application of Proposition (2.1.5) to descriptive topology.

Following Fremlin (see [59]), a completely regular topological space X is Cech-analytic if
for every finite sequence s of positive integers there is a set A(s) open or closed in the Cech-
Stone compactification of X such that
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X = U ﬁA(a\n)

oeNNn=1
where o \ n denotes the finite sequence made up from the first n terms of the sequence o.
The notion of Cech-analytic space has some interest of nonseparable and nonnetrizable
topological spaces (e. g. a Banach space endowed with its weak topology), where the
classical descriptive set theory is not applicable in general. See [59] and [53] for more
information about Cech-analytic spaces and their applications to Banach spaces.
Corollary (2.1.7)[43]: Let (X, 1) be a topological space. Suppose that there is a set T such
that X can be identified as a subspace of RT with the pointwise topology which is made up of
bounded functions and is complete for the metric d on X of uniform convergence on T. If X
has P(X, 7), then X is a Borel subset of R, in fact a pointwise (F N G),s, as Cech-analytic.
Proof: We can assume that d is defined on R and it is stronger than the pointwise topology
with pointwise d-closed balls. As complete for d, it is d-closed in RT and we finish by
applying the proofs of Propositions (2.1.2) and (2.1.5).
According to [59] a sufficient condition for (X,t) to be Cech -analytic is being
homeomorphic to a Borel subset of some compact space. The reasoning above shows that
Xn[-nn]" is Borel in [-n,n]7, so it is Borel in RT where R is the two-point
compactification of R Now, as X = U, X n [—n, n]7 itis a Borel set in the compact RT.

Hansell [59] shows that a descriptive topological space is always
Cech-analytic, in particular, every Banach space X such that (X, w) has ||:||-SLD is Cech-
analytic (see [63]). Corollary (2.1.7) contains more information about the structure of X in
that particular case.

Under the hypothesis of Corollary (2.1.7), it is easy to show that every d-Borel subset of X is
pointwise Borel in RT and analogously €ech-analytic.

It is convenient for our purposes to give a more general definition of Kadec norms
involving topologies different from the weak topology.

Definition (2.1.8)[43]: Let X be a Banach space and 7 a vector topology weaker than the
norm topology. An equivalent norm ||-|| is said to be t-Kadec if the norm topology and t
coincide on the unit sphere of ||-||.

The next result appears in [44] .

Proposition (2.1.9)[43]: A t-Kadec norm ||-||is T-lower semi continuous, that is, its unit ball
Is always t — closed.

Proof: Suppose that ||-||is not z-Isc. Then there is a net (X,,) on the unit sphere Sy and a
point X outside the unit ball By such that z-lim,, X, = X take numbers t,, > 1 such that
|IxX +t, (X, —X)| =X Let Y, =X+¢t,(X, —X). Note that {t,} is bounded
becauseinf,, ||X,, — X|| > 0.We deduce that 7-lim,, Y = X. Since ||Y, || = 1|l we should
have lim,, ||y, — X|| = 0, but this is impossible because ||Y,, — X[l = [|X,, — X|.

As mentioned, LUR norms provide examples of norms with the Kadec property. In
fact, it is not difficult to show that a z-lower semicontinuous LUR norm is 7-Kadec. At this
point important to remark that if the unit ball of a Banach space is z-closed for some vector
topology t, then the new unit ball after a renorming is not necessarily z-closed. For example,
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there exists a dual Banach space that admits an equivalent LUR norm but no equivalent dual
LUR norm (see the remark after Theorem (2.1.15).

Given two topologies 7, and 7, on X and a family Z of subsets of X we shall say that
Y is good at X € X if for everyV € t, with X € 7, there exist S € £ and U € 1, such
that X € SN U c V. A good family means a family good at every point of X. It is easy to see
that a family X covering X such that on every S € X the topologies 7, and t, coincide is
good and property P(t,,1,) IS equivalent to the existence of a countable good family of "
thick" sets from a good one made up of " thin" sets.

Lemma (2.1.10)[43]: Let X be a vector space, t, € 7, vector topologies on X and X a
family good at some X € X. Then the family
{S+W:SeX0eW €1}
Is good at X. Thus, if X and Il are families of subsets of X such that for every S € X and every
W € 7; with 0 € W there exists P € II such that
ScPcS+W
then Il is good if and only if Z is.
Proof: GivenV € 7; withX € V weshall findS € X, 0 € W € 7; and U € t,such that
XeS+W)nU cu,
as 0+ X €V we can take W,V €1, with0 e W, X € V! and W, +V?! c V. Since X is
good at X there are SEY andU' €r;suchthat X eSn’'cV'.As 0+ X € U’ we can
find W,,U € t, with and 0 € W,,x € Uand W, + U c U'. Now takeW = W, n (—W,) € 1,.
We show that U and W satisfy the above set inclusion. If Y € (S + W) n U then thereis Z €
S suchthatY—Z eWc -W, soZ=(Z—-Y)+Y € U Thus
ZeSNnUcvl,
Nowas Y—-—ZeWcW wehaveYy=(Y—-—2)+ Z€V.
The applications of Kadec type norms to the results developed are contained in the following
lemma.
Lemma (2.1.11)[43]:  Let (X, ]|-|]|]) be a normed vector space, and 7, € T, be vector
topologies on X weaker than the norm topology. Suppose that there exists a positive
homogeneous function F on X such that:
(@) F(X) = c||X|| for some ¢ > 0.
(b) T4 gng T, COiNcide on the set S{X € X: F(X) = 1}.
Then X has P(t,,1,). In particular, if X is a Banach space that admits an equivalent 7-Kadec
norm for some weaker vector topology t then X has P(]|-||, ).
Proof: Consider the following families of sets: £ = {S(t):t € [0, o)} and the countable one
I1={A(1,5):7,s €Q, 0 <7 < s}where
S ={XeX:F(X)=t}, A(r,s)={XeX:»r <F(X) <s}.
If W € 1, is a neighbourhood of 0 then it contains some ball B[0, &]. It is
easy to see that for § small enough
S)cA(t—co) cS(t)+W.
The result follows from Lemma (2.1.10).

Combining Proposition (2.1.2), Corollary (2.1.6) and the previous lemma we easily
obtain the theorems of Edgar and Schachermayer. Note that a more direct proof of Edgar's
theorem just needs a special case of Lemma (2.1.10) and the idea of point (iv) of Proposition
(2.1.2). Schachermayer's theorem moreover needs Proposition (2.1.2).
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Corollary (2.1.12)[43]: Let X be a Banach space that admits an equivalent Kadec norm.
Then Borel (X, ||-||) =Borel(X,w) and X €Borel (X**,w™).

A partial similar result has been showd by Lancin [61]
Theorem (2.1.13)[43]: Let X be a Banach space and t a vector topology coarser than the
norm topology such that By is bounded. Then the following are equivalent:
(i) X has P(||-||, T)(equivalent, (X, t)has ||-|| — SLD).
(if) There exists a nonnegative symmetric homogeneous t-lower semi continuous function F
on X with ||-]| £ F < 3|||| such that the norm  topology and t coincide on the set S =
(X €eX:F(X) =1}
Proof: (ii) = (i). This is in fact Lemma(2.1.11) .
(i) = (ii). Assume that X is endowed with a t-lower semicontinuous equivalent norm
||-1], B(0,a) and B[O, a] are the open and closed balls of center 0 and radius a. As usual By =
B[O, 1].
Suppose that X has P(]|-]|, 7) with a sequence (4,,).We can suppose every A,, is star shaded
with respect to 0 and norm open. To see that, we are going to modify the sequence in several
steps.
STEP 1: take A;, = A,, N By.
STEP 2: Take

A ={tX:0<t<1,X € A,}.

We now check that (A4;,) is good for the points of the unit sphere Sy. Let X € Sy and € > 0.
Applying Lemma(2.1.10) we can find U € t,n € N and § > 0 such that X € A, nU and

diam((A;l +B(0,8)) N U) < &. Now it is clear that

Ay n(U\B[0,1-6]) c (A, +B(0,8))NU.
Thus U' = U \ B[0,1 — 6] € t satisfies X € A;, N U" and diam(4;,, N U') < ¢.
STEP 3: The family

{rA, + B(0,8):neN,r>0,6 >0,7,6 € Q}
is good for X by Lemma (2.1.10). Renumbering this family yields the desired (4,,).
Clearly the sets A7, are star shaped with respect to 0. Let £, be the Minkowski functional of
A?. Since A, = {f,, < 1} the function f, is 7 -lower semi continuous. Let ||f,|| be the
supremum of |f,, (X)| with X € By. The function F given by the formula

ACINRNE I AGES
FOO) = 1]+ ZZ AP ETA

isT-lower semicontinuous and symmetrlc
Let (X,,) € S be a net T-converging to some X € S. From the t-lower semi continuity of
||l and f,, we have

X1 < limy, inf || Xy, |l
fu(X) < limy, inf £, (X)),

fn( X) < lim inffn (_xw);
On the other hand, it is not dlfflcult to see that

lim,, inf £,,(X,,) + Z o

1 = lim,, inf|| X, || + Z lim,, inf f,,(—=X,,)
n

L2 Il
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Since F(x)=1, a simple reasoning with lim sup gives the following equalities and the
existence of its left members:
lim||6,, || = 11X,
li‘}/nfn(xw) = fn(x):
li‘f/nfn(_xw) = fn(_x);
for every n € N.
Fix € > 0. By the proof of Proposition (2.1.2) (iii) there existn € N and U € t such that X’ €
A, nUand diam (4}, n U) < &. In particular, as A4,,is norm open then f,(X) < 1 so for w-
large enough f£,,(X,,) < 1 and thus X, € AL,.
Since for w-large enough we have X, € U we obtain ||X,, — X|| < €.This shows that the
net (X,,) converges to X in norms, so the norm topology and t coincide on S.

Clearly the in statement (ii) of the preceding theorem can be replaced by any constant
greater 1. In fact every function of the form ||-|| + aF with a > 0 has the same property. This
also shows that the norm can be approximated uniformly by functions with the kadec
property provided at least one such function exists.

Note that S is a norm Gg-set in B ={X € X:F(X) < 1}, thus (S,t) is completely
metrizable.

A remarkable theorem of Kadec (see [45]) shows that every separable Banach space has an
equivalent T-Kadec norm for the topology t of convergence on a fixed quasi-norming subset
of its dual space. The following result extending Kadec's theorem.

Theorem (2.1.14)[43]: Let X be a Banach space and t a weaker topology such that By is
bounded. Then X has an equivalent t-Kadec norm if and only if X has P(||*||, T ) where the
sets (4,) in Definition (2.1.1) are convex, in other words, if there exist convex, sets A4,, € X
such that for every X € X and every € > Othere aren € N and U € 7 suchthat X € A, n
U and diam(4,, nU) < &.

Proof: If we begin with (4,,) convex in the proof of Theorem(2.1.13) it is easily checked that
all the families of sets built there are still convex. Thus F is subadditive and so it is an
equivalent T-Kadec norm.

For the converse assume that the norm of X is 7-Kadec. The proof of Lemma (2.1.11) shows
that X has P(]|-]|, 7) with a sequence of differences of closed balls centered at 0. As the closed
balls are t-closed we deduce that the sequence of closed balls with rational radii satisfies
what is required.

We do not know if property P(]|-||, w) implies the existence of anequivalent Kadec norm.

Molto, Orihela and Troyanski [62] have given a characterization of the existence of an
equivalent LUR norm in a Banach space using a variant of Definition (2.1.3). Their result can
be reformulated in similar terms to those of Definition(2.1.1) as follows: a Banach space X
admits a LUR norm if and only if there exists a sequence of sets 4,, € X such that for every
X € X and every € > 0 there isn € N and an open semispace U such that X € A, N U and
diam(4,, N U) < . Note that the topological counterpart of this result is Theorem(2.1.13)
applied to the weak topology but to deduce that the function F is in fact a Kadec norm we did
need a geometric assumption about the sets A4,,.

A Banach space X is said to be weakly countably determined (WCD) if there exists a
sequence (K,,) of w*-compact subset of X** such that for every x € X and every Y € X** \ X
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thereisn € N with X € K,, and Y € K,,. WCD Banach spaces generalize in a natural way
the weakly compactly generated Banach spaces (WCG), that is, the spaces containing a total
weakly compact set. A WCD Banach space admits a LUR norm [71]
The coincidence of Borel families in the following theorem imshows one by Talagrand [68]
for subspaces of WCG Banach spaces.
Theorem (2.1.15)[43]: Let X be a WCD Banach space and let = be a Hausdorff vector
topology weaker than the weak topology of X. Then X has P(||:||, t). Moreover, if B} is
bounded then X also admits a t-Kadec norm topology and
Borel(X, ||-||) = Borel(X, 7).

Proof: We can assume without loss of generality that the sequence (K,,) is closed under finite
intersections. We claim that the sequence of w*-closed convex hulls {co(K,,)¥"} also satisfies
the above definition. Indeed, fix X € X and Y € X™* \ X. The set K = Nyek, Ky is @ weakly
compact set of X containing X. Now, since co(K)Y is a weak*-compact convex set not
containing Y, there is a weak*-open half space H such that X € H and Y ¢ H* . By
compactness, there is n € N such that X € K,, € H. As co(K,)" < H* we see that X €
co(K,)"” and Y ¢ co(K,)" . This ends the proof of the claim.

First we check that X has P(w, t). For every X € X define

Sx= ﬂKn

Kn3X
By definition of WCD it is clear that Sy is a weakly compact subset of X.

If we take {S} as Z and the traces on X of finite intersections of K,,’s as a countable
family 11, then the conditions in Lemma (2.1.10) are satisfied. Indeed, X covers X, and t and
w coincide on every S, by compactness, so X is good for (w, 7). Now let W be a weak
neighborhood of 0 and let W1 be a weak* neighborhood of 0 in X** such that W = X n W1,

For some increasing sequence (n;) of integers we have Sy = N; Ky, By compactness there
are a finite number of Kn's whose intersection is contained in S, + W1. So X has convex
P(w, 1).

Since a WCD Banach space admits a Kadec norm, it has convex P(]|]|, w). Now X has
P(]|-||, ) by Proposition (2.1.2) (ii) with convex sets.
The existence of a t-Kadec equivalent norm follows from Theorem (2.1.14), and the
coincidence of Borel sets follows from Corollary (2.1.6).

Using the general definition of a countably determined topological space (X, t;) in
terms of use maps one can show that X has P(t,,1,) for every weaker Hausdorff topology
T,, but it is not clear if that implies the coincidence of Borel sets. For example, in the
preceding theorem, if we want to show the coincidence of Borel sets for T and the weak
topology directly from the fact that X has P(w, ) we have to check that X N K,, is
T-Borel, which is not evident except in the case of a WCG space. Roughly speaking that was
the argument of Talagrand [68], but WCD spaces were introduced some years later.

In the particular case of a dual WCD space, when t is the weak* topology it is known
that the space admits an equivalent dual LUR norm
[8]. Without the hypothesis of WCD the result may not be true: the space J(w,) is a dual with
the Radon-Nikodym property, so it admits an equivalent LUR norm [45], but Borel
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(J(wy),w™)is a proper sub set of Borel (J(w;),w) = Borel (J(w,), ||*|l) (see [50]). A natural
generalization of dual WCD is the dual spaces X* such that (By--, w") is a Corson compact
set but in this case there may be no dual LUR norm [55].

The next corollary is inspired by a result of [48] for WCG spaces.

Corollary (2.1.16)[43]: let Y be a Banach space and t a vector topology weaker than the
weak topology of Y such that the unit ball BY is bounded. If X is a WCD norm closed
subspace of Y then X is a t-Borel setin Y.

Proof: Note that 7 is Hausdorff. We deduce from Theorem (2.1.15) that X has P(]|-||, 7).Now
apply Proposition (2.1.5) (b).

It is not difficult to see that under the conditions of Corollary (2.1.12) if X is
K,s in (X™,w*) (for example if X is WCG) then it is an F s in (Y, 7) while the proof of
Corollary(2.1.16) shows that X is an(F N G),s. It is not known if a WCD Banach space is
always a K 5 in (X**,w*)(see [47]).

It is known that K-analytic topological spaces are Cech-analytic for every Hausdorff weaker
topology. The same result is not true in general for WCD topological spaces. The next
corollary gives a positive answer in the particular case of Banach spaces and "reasonable™
topologies.

Corollary (2.1.17)[43]: Let X be a WCD Banach space and 7 the topology of convergence
on a quasi-norming subset of X*. Then (X, 7) is Cech-analytic.

Proof: Using an equivalent norm we can suppose that T s given by a norming subset. Then
apply Corollary (2.1.7).

Let us mention here that it is a consequence of Proposition (2.1.4) and
Theorem(2.1.15) that under the hypothesis of Corollary (2.1.17) ,(X, 1) is o-fragmentable
and, in particular, the T-compact subsets of X are fragmentable (see [46]).

A typical situation is the case of C(K) spaces with the pointwise topology. There is a
huge family of compact spaces K called Valdivia compact sets such that € (K) admits a LUR
norm which makes the unit ball pointwise closed [70]. So the results above are applicable, in
particular the Borel sets for the norm and pointwise topologies coincide. Recently Haydon,
Jayne, Namioka and Rogers [56] have shown that if K is a totally ordered set that is compact
in its order topology then C(K) admits a norm with the Kadec property for the pointwise
topology so the same coincidence of Borel sets holds.

A different class of compact spaces where we can check directly the coincidence of
Borel sets in C(K) for the weak and pointwise topologies is the class of Radon-Nikodym
compact spaces. Originally, a compact space is called Radon-Nikodym when it is
homeomorphic to a w*-compact subset of a dual with the Radon-Nikodym property.
Equivalently a compact set K is Radon-Nikodym if and only if there exists a stronger lower
semicontinuous metric d on K such that every Radon measure on K is the restriction of a
Radon measure on (K, d) [64] and [57].

Theorem (2.1.18)[43]: Let K be a Radon-Nikodym compact space. Then C(K) has an
equivalent point wise lower semi continuous norm such that on its unit sphere the weak and
point wise topologies coincide, C(K) has P(w, tp(K))and

Borel(C(K),w) = Borel(C(K), tp(K)).
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Proof: A continuous function on K is d-uniformly continuous. Indeed, suppose not. Then we
can take sequence (X,) and (Y,) in K such that lim, d(X,,Y,) = 0 while|f () —
f (Y| =6 for some § > 0.By taking an ultrafilter we make the sequences converge to
the limits Xx and y respectively. But by the lower semicontinuity of d we have d(X,VY) =
0 so X = Y and this contradicts the continuity of f.

Fix a d-dense set (X;,) 4er- Now we define the seminorms 0,, as follows:

On(f) = sup sup{|f (X) — f(X)]: d(X, X¢) < 1/n}.

a
Clearly 0,, is pointwise lower semicontinuous and since every f € C(K) is d-uniformly
continuous, for every § > 0 there exists n € N such that 0,,(f) < 6.
Define a new norm by the formula

o 1
AN = 1A+ ) 2 0n ).
n=1

Evidently ||| < |II)lIl < 3]I*]l. Thus [||-]|] is an equivalent norm in C(K).

It is also not hard to check the unit ball of ||| . ||| is pointwise closed.

We now check that the weak and pointwise topologies coincide on S ={f €
C(K):|IIfIIl = 1}.Let (f,,) be a net in S pointwise converging to f € S. Take a Radon
measure p with ||u|] < 1 that we suppose already defined on Borel(K, d) and take € > 0.

From the pointwise lower semicontinuity of |||| and O,,, reasoning as in Theorem
(2.1.13) we deduce that lim,, 0,,(f,,) = 0,,(f) for every n € N.

Now fix n € N such that 0,,(f) < ¢/8. Then for w large enough 0,,(f,,) < €/6. Since
u has a d-separable d-support we can fix F c T finite such that

M (U B[xall/n]> > 1l () — 7.

aEF

If w is large enough then |f, (X,) — f(X)| < g/6fora € F.So |f,(X) — f(X)]| < /2 for
every € Uger B(Xy, 1/n) .
If we have in mind that ||f]| and ||f,,|| are bounded by 1, an easy calculus gives

(- Pl < flfw —fldlul < ¢,

which implies that (f,,) converges weakly to f.

Now apply Lemma (2.1.11) to deduce that C(K) has P(w, tP(K)). Since the unit ball
is pointwise closed the weak and pointwise topologies have the same Borel sets by
Proposition (2.1.2)(iv); moreover, every weakly open set is a countable union of differences
of pointwise closed sets.

Clearly Theorem (2.1.15) s still true for a continuous image of a Radon-Nikodym
compactum. We know no example of a compact space with different Borel sets for the weak
and pointwise topologies.

Note that if K is Radon-Nikodym compact and (C(K),w) has ||-|| -SLD, then
(C(K),tp(K)) has ||-||-SLD. In particular, K has Namioka property (see [58].)

Corollary (2.1.19)[260]: A t2-Kadec norm ||-||is T2-lower semi continuous, that is, its unit
ball is always 72-closed.
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Proof: Suppose that ||-||is not T2-Isc. Then there is a net (X,,2) on the unit sphere Sy and a
point X outside the unit ball By such that 72-lim . X,. = X take numbers ¢,z > 1 such that
X+ ¢t,2(X,2 —X)| = ||X]]. Let Y,z =X +t,2(X,2 —X). Note that {¢,2} is bounded
because inf,2||X,,2 — X|| > 0. We deduce that 72-lim,.Y, . = X. Since ||Y .| = IIX|l we
should have lim,,2 ||Y . — X|| = 0, but this is impossible because [|Y,,2 — X|| = [|X,,2 — Xl
Section (2.2): Function Spaces with Weak Topology

One of the main results is that the duality (£, (£*)*) is not Borel; see Corollary
(2.2.2) for a precise statement.

We shall derive this fact from the more general Theorem (2.2.1) concerning the
Banach spaces C(K) of real-valued continuous functions on compact F-spaces. A compact
space K is an F-space if any continuous map c: U — [0, 1] defined on an open ¢ —compact
set in K can be continuously extended over K: cf, [77] .We shall write C,,(K) when
considering the function space with the weak topology. The result we are just about to state
involves C-measurability, a notion essentially weaker than Borel measurability. The C-sets in
a topological space are the elements of the smallest o — algebra containing all open sets and
closed under the Souslin operation A;cf. [82]. A function f:X - Y is C-measurable
if f~1(U) is a C-setin X provided that U is openin Y.

Theorem (2.2.1)[72]: For each infinite compact F-space K, the evaluation map e: K X
C,(K) = R,e(x, f) = f(x), is not C-measurable.

Corollary(2.2.2)[72]: The duality map ¢, ): (£*,weak) X ((£*)*,weak*) = R, (x,x*) =
x*(x),is not C-measurable. To derive this result from Theorem (2.2.1). Let us identify £
with C(BN), SN being the Cech-Stone compactification of the natural numbers N. then upon
identification of x € SN with the probability measure supported by {x}, one can consider SN
as the subspace of ((£*)*,weak"), and the evaluation map C(BN) x SN — R is the
restriction of the duality map (, ).

It is worth noticing that a theorem of Rosenthal [89] asserts that under the continuum
hypothesis, £* embeds in C(K) for any infinite F-space K. In fact, assuming the continuum
hypothesis. Theorem (2.2.1).and Corollary (2.2.2) are closely related to each other; cf. [75].
Page (2):

We shall prove a slightly more refined version of Theorem (2.2.1) , considering a
topology T in C(K) which, on norm-bounded sets in C(K), is between the weak and norm
topologies (the topology will play an essential role .The idea of the proof of Theorem (2.2.1)
is closely related to the reasoning by Jayne. Namioka and Rogers [80] (cf, also [81], to the
effect that the spaces C(K) in Theorem (2.2.1) are not o —fragementable. They proved a
stronger theorem that "tree-complete™ spaces K have function spaces which are not o —
fragementable. The idea of Jayne, Namioka and Rogers can also be adapted in our case, by
a refinement of the proof of Theorem(2.2.1) applied to a tree-complete compact space K
defined by Haydon and Zizler [79], it yields C(K) without any subspace isomorphic to £*
and non-Borel evaluation map e: K X C(K) — R.

Talagrand [69] proved that Borel o — algebras in?* associated with the weak and the
norm topologies differ, that is, Borel (£, weak) #Borel(#*, norm); cf [90]. However, using
a certain result oHaydon [78] concerning function spaces on trees, one can define a compact

54



(scattered) space K with Borel(C(K), weak), # Borel (C(K), norm) and the evaluation map
e:K x C,,(K) - R Borel-measurable; cf.

The reader is referred for some links between the topics discussed in the paper and
interesting recent work by Burke [73], and Kendrov , Kortezov and Moors [83], [84].

Let c(K) be the function space on a compact non-scattered space K. Let us fix an
irreducible continuous @: Z — [0, 1] from a compact subset Z € K. (Since K is not scattered,
there is acontinuous surjection u : K — [0,1]; let Z be a minimal compact set mapped bu u
onto [0,1]and @ = u|z-) Let T be the collection of all sets of the form AU
¢~1(B),where A € K,Z is compact, B is closed in [0,1] and @~1(B) has relatively empty
interior in Z. We shall consider in C(K) a topology t associated with @, generated by basic
sets.

N(f,C) ={ge C(K):glc = flc}, CeZ (1)
Let C.(K) be the function space C(K) equipped with the topology z.

c: U — [0, 1],where U=dom c is open and ¢ — compact. (2)
We shall consider go with the discrete topology, and let g™ be the countable product of .
Let

M ={(cy, 3 +) € pN:dome, © dom ¢y q, ciyqldome; = ¢;}. (3)

Let
YCSZXC(K)yxM (4)
Be the subspace of the product consisting of all sequences
y = (X, f' C1,Cp ) (5)
Such that (cf. (3))
er\Udomci, 0<f<1, (6)
i=1
(c1,¢c0 ") EM and f|l|domc; foralli €N. (7)

Lemma (2.2.3)[72]:Let g4, ¢,, - - be open sets in ¢, dense in a nonempty open set U in
4. Then there are points y;, = (x;, f,¢q,C0, ") €Ny, £y, i = 0,1, such that f(x,) =0,
flx) = 1.
Proof: To begin, let us introduce convenient nation for basic open sets in the space Y. For
every finite sequence (cq, ¢, * +, ¢,) With domc, € dom c;, 4, c;+1|domc; = c; (cf. (3)), let
Ny -wrer) ={(c 6 Cran s )i (620 ) €MLY (8)

Then basic open sets in gare of the form.

N(U'flcicl'. ) .'CT') = [U X N(f’C) X N(Cl’. ) .’CT')] n/y" (9)
Where N(f, C) and N(c,," - -, c,-) are defined in (1) and (8),

U C Kisopenand UnNdomc, = ¢. (10)
Note that the set in (9) is nonempty if and only if (cf. (4) and (7))
UnNnZ,domc, +# ¢ and f|domc, = ¢, (11)
Now, in Y, find a nonempty basic open set
Uy = N(Uy, fo,Co, €1, " ", Cro) & o (12)

We shall choose inductively basic open sets.
d+U, = N(Un» frr G €1 e 7 Crn) S Up1Ngp n—12, (13)
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Such that
Un+1 < Un: Cn c n+1, (14)
C, € domc,,,, n=1, (15)
and there are points
an, b, € domc,,NU,_1, cm(ay,) =0, cn(by) =1, n=1 (16)
To this end, let U, be as in (12) and assume that ‘U,, has already defined Since U,,Ng,+1 #
¢, there is a basic open set in Y such that :
¢ +* N(U» f,C ey, Crpr Crp+10""" Cr) S UnNGnar- (17)
One can assume that U € U,, and C,, < C.

We set C,,,.; = C.Since U N Z # ¢ (cf. (11)), and C N Z is nowhere dense in Z (cf, the
definition of ¥ ), there is an open set W in Kwith W nZ # ¢, and W < U\ C. Let W, W, be
disjoint nonempty open set in K, WoUW; € W, W nZ\ (W, UW,) # ¢, and let a,,; €
Wy, bpi1 € Wy. Let f,41: K = [0,1]be a continuous function which coincides with f on
(K,W), fue1(@ns1) =0, fne1(bps1) =1. Finally, let H be an open o-—
compact set containing(K\ W)u (W, UW,;) with Z\H # ¢, and let us set U,,; =

k/H,r,., =7+ 1, and declare cr,,, to be the restriction of f,,,; to H.
Having defined the sets U,, in (13), let us consider a continuous function f: K — [0, 1]
extending all c,.. Since K is an F-sp ace, (2) and (3) guarantee the existence of such an
extension. Next, using (16) and (14), let us pick.

Xo € ﬂ U,N{a,:n € N}, X; € ﬂ U,N{b,,:n € N}, (18)
We claim that " "
Yi = (xl'Jf' C1,C1,"') € ﬂ g’n' [ = 0' 1. (19)

n
To this end , we shall make sure that y,,y; € U, for every n ;cf. (13). Indeed, x;eq, (cf. (16)
and (20)), and (cq, ¢z, - *) extends (¢q, -, ¢y, , ). Finally, fand f;, coincide on C,, (cf. (15) and
(11)). In effect, f € N(f,,, C,)(cf. (1)), and hence y; € U, (cf (9)). Moreover, f(a,) =
0,f(b,) =1 forn € N (cf. (16)), and therefore, by (20), f(x;) =i, i = 0,1.That concludes
the proof of the lemma.
Proposition (2.2.4)[72]: Let K be an infinite F-space and let 7 be the topology in C(K)
generated by basic sets (1). Then the evaluation map e: K X C.(K) — R is not C-measurable.
To see that Theorem(2.2.1) follows from Proposition(2.2.4), let us make the following
observation.
We devoted to a proof of Proposition (2.2.4). Let o be the collection of continuous
functions.
Proof: We will now derive Proposition (2.2.4) from Lemma(2.2.3) let
H ={(x,f) € Zx C.(K): f(x) > 0}. (20)
Let n: ¢ — Z X C,(K) be the restriction to ¢ of the projection parallel to M, and let
H = T[_l(H) = {(xrf' C1,€C2, " ) € y"f(x) > 0} (21)
Aiming at a contradiction, assume that  is a C-set in ¢; hence it is open modulo
meager sets in y; cf. [82], [29], [83] Lemma (2.2.3) shows, in particular, that ¢ is a Baire
space, hence either H or ¢\ H is nonmeager in 4. In effect, there is a G5 — set g iny,
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dense in some nonempty open set in ¢ such that either o € H or o N H = ¢. However,
using Lemma(2.2.3) again, we conclude that g interests both & and its complement; cf.
(20). This contradiction ends the proof of the proposition.

Lemma (2.2.6)[72]: Let ¢:S = C,,(K) be a continuous map from a choquet space S of
weight 2o to the function space endowed with the weak topology such that ¢ takes
nonempty open sets to sets of norm-diameter 1. Then there is a non-C-set in C,, (K) which is
norm-discrete.

Proof: The Choquet property of S provides a function o associating to each finite sequence
Uy, U,, of nonempty open in snonempty open set a(U,,, U,) € U, such that

ﬂ U, + ¢, whenever U,,,; € o(Uy, >, Uy),n=1,2, (22)

n
Let us fix a base R for S of cardinality 2o, and let A be the collection of dyadic systems
D ={T,:t € 2No}, ¢ # U, € R, (23)
whereU,» € U, rift" extendst" and Uy NUr = ¢ if t',t" € 2™, t" = t", and the
following conditions are satisfied.

Ueco(UnUeUe ), ten 249)
. 1 2 n !
lp(w) — ()| > E,wheneveru eU,veUmnt' t'"e2t' +t"(25)
Page (6):
For each ® enand t € 2V we pick Py (t) € N, Uy and let

A(D) = ¢p({Pp(D): t € 2V}). (26)
Then, by(22), (24) and (25),
|A(D)| = 2%oand||f — g|| = - for distinct f,g € A(g).  (27)
Since |B| = 2No we see |A| = 2No, and we can list the elements of Aas {B,:a < 2No}.
Then, by (27), one can pick, by transfinite induction, pairwise distinct f,, g, € A(D,) such
that ||f, — f3|| = %for a > B. Letting B = {f,: a < 2No},we have .
BNA(D,) # ¢ # A(D)H\B, a < 2No, (28)
Since B is norm-discrete it is enough to make sure that B is not a C-set inC,,(K). Assume
the contrary. Then ¢~1(B) is a C-set, and hence it is open modulo meager sets in the Baire
space y.Therefore are nonempty open sets G = N2, G; is contained in either ¢ ~1(B) or its
complement.

Notice that if |[f —g| > %,f,g € C(K),thereisa € K with |f(a) —g(a)| > % and

hence there are neighborhoods U, V of f and g in C,,(K) such that || f" — g'|| > % whenever

f' e U,g' e V. Using this fact and the assumption that ¢ takes nonempty open sets to sets
with norm-diameter 1, one readily constructs a dyadic system D (cf. (23)) satisfying (24)and
(25) and U; < G,fort € 2™. Then (cf. (26)) A(D) is either contained in B or disjoint from B.
However D = D,, for some «, and we have reached a contradiction with (36).

Theorem (2.2.5)[72]:for any infinite compact F-space K there is a norm-discrete set in C(K)
which is not a C-set with respect to the weak topology.
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We shall derive this theorem from a lemma, closely related to Fremlin's theorem 7J in
[76]. We refer to Kechris [82] for the notion of Choquet spaces (or in the terminology of [76],
weakly-a-favorable spaces).
Proof. We first prove the theorem for F-spaces of weight 2Vo, and then we reduce the general
case to the case for weight 2", Let us recall that any infinite compact F-space contains a
copy of BN and hence it has weight at least 2o,
(A) Let K be a compact F-space of weight 27o., we shall consider C,(K), the function space
C(K) with the topology t determined by basic sets.

N(f,C)={geCK):glc=flc}, CeZ (29)

Since Z is the intersection of at most 2Mo open sets, 7 has a base of cardinality 2o . Let M
be the space defined in (3), and let S be the projection of the space ¢ defined parallel to the
Z-coordinate, that is, let

SCC(K)xM (30)
consist of all sequences
0= (f' C1) CZIM) (31)
such that
Z\Udomci;tcp, 0<f<1 (32)
i=1
(cq,Cp") EM, fldomc; = c;. (33)
We shall apply Lemma(2.2.6) to the map
®:5 > C,(K), @(f,c1,050) = f. (34)

The map @ is continuous, T being stronger than the weak topology on the unit ball Basic
open sets in S are of the form.

N(f,C, ¢t 6) = [N(f,€) X N(cy,, )] N S (35)
(cf. (1) and (8). The set in (28) is nonempty if and only if (cf. (25) and (26))
Z,domc, # @ and f|domec,. (36)

Since, for a C € &, C N Z has empty interior relative to Z, (36) yields that Z, (C U domcr) *
@, and since Z has no isolated points, the image of the set in (28) under @ has norm-diameter
1. Therefore, to apply Lemma(2.2.6).it is enough to make sure that the space S is Choquet.
Playing the choquet game in S, (@) and () may restrict their moves to basic sets given in
(28), and a winning strategy for () is to respond to a move N(fn, Cr, crn)of (B),n even, in
the following way. By the observation following (29),Z\(Cr U domcr) #+ @, and (o) picks
an open ¢ -compact U € K containing C, U domc, with Z\U =@ , sets r,., =71, +
Lcr,,, = alU, fas1 = fo Gy = Gy, and plays with N(f;14, Chpq, €1, Cry, ). Since K is
an F-space, there is f € C(K),0 < f < 1, coinciding with every c;on its domain. For each
evenn,C, € domc, . and c, . coincides with f,onC,; hence f € N(f,, C,) and in effect
f € N~y N(fx, Ci). Moreover, Z \ dom c,, # @ for each k, and hence Z \ Ny-,dom c; #
@.1t follows that (f, ¢y, ¢2,7) € Ug=o N(fyi, Cny €1, ¢y, ), that is, (x) indeed wins in the
ame.
) An application of Lemma (2.2.6) now completes part (A) of the proof.
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(B) Let K be an arbitrary infinite compact F-space. Let us fix a uniformly Closed sub-algebra
A,0f C (K) containing the unit, with infinite linear dimension and |A,| < 2o, and let us
define, by transfinite induction, uniformly closed sub-algebras of C(K)

Ay S A S Ay S, a<wy,|Ag| < 2N, (37)
such that for any f € A, thereis f € A4, With f(x) =0 if F(x) < 0 and
fx) =1if f(x) > 0. (38)

IfA,, is defined, and f € A,, we have {x: f(x) < 0} n {x: f(x) > 0} = @,
K being an F-space; let us fix f € C(K) as in (38). Then A, is the uniformly closed sub-
algebra of C(K) generated by the set A, U {f: f € A,}.

The algebra A = Uy, Ag is uniformly closed in C(K). Let g: K — L be the question
map identifying the points in K which are not separated by any function in A.The adjoint
map q*: C(L) - A, q*(u) = u°q, identifies the algebras. The compact space L is infinite
(A, being infinite-dimensional), and the weight of L is not greater than 2Vo, as |A| <
2No; cf, (37). Let us check that L is an F-space. By [77], it is enough to show that for any pair
U, V of disjoint open ¢ — compactsetsin L, U NV = @. Let u: L - [—1, 1] be a continuous
map with u(x) < 0forx € U,u(x) >0forx € V. Then f = q*(u) € A, and hence f € A,
for some a; let f € Ay, be as in (38). Letf = q*(v). Then v: L - [0,1] is zeroon U and 1
onV.and UNnV = 0.

Now, by part (A), there is a norm-discrete set E in C(L) which is not C-set in the weak
topology, and the set g*(E’) has corresponding properties in C(K). Function space C(K) with
different norm-Borel and weak-Borel sets and the Borel duality map for any compact
scattered space K, the space C(K)* dual to C(K) can be identified with the space ¢;(K) of
functions.

ALK - R, |[A(x)| < oo. (39)
where the duality map is defined by
(F.2)= D fG. A (40)

X€EK

Example (2.2.7)[72]:There exists a compact scattered space K such that the duality map
(,):C,(K)x (£,(K),weak™) — R is Borel, while Borel (C(K), weak) # Borel (C(K), norm).
The space K in Example(2.2.7) , the one-point compactification of a standard tree, was
considered by Haydon [54] in his work on reforming in function spaces. We shall begin with
explaining some notions concerning the trees, following Deville, Godefroy and Zizler [74]
A tree T is a set with a partial order < such that the segments {s:s < t}are well-
ordered. We assume that if {s:s <t;} ={s:s <t,}
and the segments have a limit ordinaltype, then t; = t,. We assume also that T has the
least element(¢), the roof. The topology of T is generated by the base consisting of the
intervals (s, t] = {u:s < u < t} and the root is isolated. Let T = T U {o0} be the one-point
compactification of T. The intervals [s,t] = (s, t] U {s}, where sis a successor in T, are
open and closed in T. We shall denote by Succ(t) the set of immediate successors of ¢.
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We shall first establish the following.
Proposition (2.2.8)[72]: For any tree T. the duality map {, ): C,,(T) x (#,(T), weak*) » R
Is Borel measurable.
Given a compact scattered space K and a finite set D € R containing 0, we set

C(K,D) ={f € C(K):f(K) < D}. (41)

In the proof of Proposition (2.2.10), we shall use the following discretization lemma, proved
(in a slightly different form) in [54], [78], [86].
Proof: We shall verify the assertion in a few steps, the sky being Claim A, given below. Let
us begin with some preliminary observations. Given A < C(T) or I' c ¢,(T), we shall
denote by (A, w)or (T, w*) the subspaces of (C(T), weak), or (£,(T), weak™), respectively.
Forany A € T and 1 € ¢,(T), we write.

141(4) ZIA(t)I, 121l = 121(T). (42)
teA
For each open W < T and r > 0, the set
{1 € £,(T): 1Al(W) > rlisopenin (¢,(T), W), (43)
and the map
A = A(0) is Borel on (¢, (T), W*). (44)

(For the reader's convenience, more details on property (44).) Let

Co (T) {f € ¢(T): f(e0) = 0}, z = {2 €6, (T):|IAll = LA(e0) =0}.  (45)
The assertion of Proposition (2.2.8) follows easily, as soon as it is established that the duality
map.

() (Co(T), W) x (X, W*) > Ris Borel. (46)
Indeed, let 6, be the Driac measure concentrated at co and let RS, be the line spanned by &,
. Letg(1) = 1 — A(0), 8. By (42)-(44), the mappings A — a(1),A — ||a(4)]| are Borel,
andsois A — a(1)/|la(A)|| € Y, defined for A & RS .
Therefore (cf.(44)) yields that the duality map
o(d)

(f, ) = lleDII.Af = f (), ||a()1)||> +(f (), 2)

is Borel on (C,, (T), weak) x (#,(T) \ RS, w*) and of course it is also Borel on C(T) x
Ré. We may consult for some details omitted in this reasoning.
The rest of the proof will be devoted to a verification of (46).
(A)Let D < R be a finite set, 0 € D, and let (cf. (41) and (45))
Co(T,D) = {f € Co(T,D): f(0) = 0}. (47)
Claim A. There are Borel sets 7£,, in (Co(T, D), w)coveringC, (T, D)such that for every f €
H,, and finite, F < T there is aneighborhood # of f in (H,,, w) and a neighborhood W of F
in Twith g/w for any g € .
Proof. We shall prove first the claim for D = {0, 1}. Let
e = Co(T,{0,1}), (48)
wheree is equipped with the weak topology. For f € &, we let
S(f) ={t €T:f(t) =1and either t = (¢) or there is s € T with
t € Succ(s)and f(s) =0} . (49)
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Let f € ¢ and Ar S T X T be the finite set of pairs (s, t) with t € Succ(s), f(s) =0} and
f(t) =1.Then

Uy = {g € £:g(s) = 0,8(t) = 1 for (s,t) € Ay andg((9)) = f(($))}. (50)
Is a neighborhood of f in & such that

S(f)SS(g) for any g€ Uy, (51)
It follows from (51) that each set {f € €:|S(f)| = n} is open in &, and therefore each set.
&, ={f € & |S(f)| = n}isBorelin¢. (52)

We shall check that the sets #,, = &, satisfy the assertion of Claim A.Let f € ¢, and
let F € T be finite. For each t € F,we chooset® = t,iftisisolatedin T, and t* < t such
that t* is a successor and f is constant on [t*, t],,if tis notisolated. Let F* = {t*:t € F}.
We set 7 ={ g € &,:gcoincides with f on FU F* U {(¢)} } N U,(cf. (52) ). and W =
U{[t", t]: t € F}. Notice that (50) and (52) imply that S(f) = S(g). We shall check that
any g € s coincides with f on W. Letw € [t*, t],t € F. Assume that f(t) = 1. Then take
value 1 on [t*, t] and g(t*) = g(t) = 1. Lett* < t.

If g(w) = 0, let s be the maximal element of [t*, t] with g(s) = 0.

Then, for u € Succ(s) N [t*, t],u € S(g) \ S(f), which is impossible.

Similarly, if f(t) = 0, and hence f takes value 0 on [t*, t], we infer that g(w) = 0 for
w E [t* t].

We shall now consider the general case, D = {0, d;,d,, -+, d,,} S R.

Let r:D - {0,1} take d; to 1 and other elements of D to 0, and let
0;:(Co(T,D),w) - (g,w) be defined by o;(f) = r;°f; cf. (49). Then. arranging the sets
Ny, ai‘l(sni),ni € N, into a sequence H,, H,, -, we get Borel sets satisfying the assertion
of Claim A.

(B) With Zand C, (T‘, D) defined by (45) and (42), we shall check the following claim.
Claim B. The duality map {,): (Co(T,D),w) x (£,w*) - R is Borel.
Lemma(2.2.9)[72]:Let K be a compact scattered space. For i € N, there are Borel sets
D; in C,,(K), finite setsD; € R,0 € D;, real numbers &(i) >0 and continuous maps
®;: (D;,weak) - (C(K, D;), weak) such that the following hold.
) llf = @:(OIl < @) andP;(f)(x) = 0 when f(x) = 0.
(if) Forany f € C(K)and € > 0, thereisiwith f € D; and 6(i) < «.
Proof: To this end, let us consider the sets #,, defined in Claim A, and for M > 0,r € R, let
us set.

Hn,M,r)={(f,1) € H, XZ:||fl| £ M and (f,A) > r} (53)
To get Claim B it is enough to verify that the sets H (n, M, r) are Borel. In fact, we shall see
that H'(n, M, r) is relatively open in the Borel set {(f,A1) € H,, X Z:||f|| < M}.Let (f,A) €
Hmn,M,r).Then(f,A) >r+ ¢ for somee > 0; let F be a finite set with [A|(F) > 1 —
g/2M(cf.(44)).
Let F be a neighborhood of f and W a neighborhood of , given by Claim A. Then

W={weX(fA)>r+e¢|v|(W)>1-¢/2M}

is a neighborhood of Ain (Z,w*);cf.(4.5).Let (g,v) €V X W,||g|| < M.By Claim A.
glw = flw; hence [{f,v) — (g,v)| < 2M.|v|(T,W) < 2M. ¢/2M =¢. Since (f,v) >r +
g, we get(g,v) >r, thatis, (g,v) € H(n,M,r).
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(C) We shall now use Lemma (2.2.9) for K = T to complete the proof of (46). Let us
consider the unit ball (cf. (45))

R ={f € C(T):IIfIl <1} (54)
It is enough to check that the duality map (, )(%B,w) X (Z,w*) — R is Borel, that is that for
any r € R, the set
A) ={(f,A) e RxZ:(f,A) > rl}is Borel in (B,w) x (Z,w*). (55)
Let us adapt the notation from Lemma(2.2.9) and consider

?Ri =§Rﬂ®i, CI)l-:?RL- —>CO(T,DL').
Let (cf. Lemma (2.3.9))
A(r,i,k) ={(f,1) €R; xZ:6(i)) <1/k and (D;(f),A) >r + 1/k}.(56)

Since the map @; is continuous with respect to the weak topology, claim B yields that the sets
A(r, i, k) are Borel in (R;,w) X (Z,w*). Therefore, to prove (55), and hence to complete the
proof of Proposition(2.2.8) , it is enough to show that

A(r) = Uc/l(r, i, k. (57)
i,k

Let (f,A) € A(r,i,k). Then (®;(f),A) >r + 1/k (cf. (56)), and ||f — P;(H)]l < 6() <
1/k, by Lemma (2.2.9). Since ||A|| =1, we get(f,A) >r, thatis (f,1) € A(r);cf. (55).
Conversely, let (f,A) € A(r),and let k be such that (f,A) > r 42/ k. By Lemma (2.2.9),
there is | with f € ©; and 6(i) < 1/k. Then f e R, ||f — P;(f)l| < 6(i) <1/k, andin
effect (&,(f),A)>r+2/k —1/k,thatis, (f,A) € A(r,i,k).

Let (cf. [74]) T be the set of all injective maps t: « — N defined on countable ordinals
such that N \ t(a) is infinite, equipped with the order t < t' & domt € domt’, and t’
extends t. Haydon [54] proved that there is a Choquet space S and a continuous injective
function ®:S - (C(T), weak) with ®(S) norm-discrete. Moreover, the space S has no
isolated points and has weight 2o, and by a theorem of Fremlin [76]. S contains a non-Borel
set A(cf. also Lemma (2.2.6)). Then ®(4) is not Borel in (C(T), weak), being norm-discrete.
On the other hand, Proposition (2.2.8), shows that the duality map is Borel measurable.

In the proof of Proposition (2.2.8), We have omitted some standard, but not quite
trivial, details concerning Borel measurability of the maps in the proof.
(A) Let K be a compact space, and let M(K) be the space of Radon measures on K, endowed
with the w* -topology. Then , for any point p € K, the function u+— u({p}) is Borel
measurable on M(K).
To begin, let us recall that for any compact F € K, the map u — |u|(F) (and hence u —
|u|(K \ F)) is Borel on M(K). In particular, the set B = {u € M(K): |u|(K) = 1} is Borel.
We claim thatC = {u € B: u({p}) > 0} is Borel in M(K). To that end, let S be the set of all
pairs (a, b) of rational numbers with0 < a <b < 1,b —a < a < a/2. Then each set

B(a,b) = {u € B: u({p}) € (a, b)}Is Borel.

and

| JiB@b): @ b) €53 = B\ {53, ~03)
Therefore, to check that C is Borel it is enough to make sure that:
C(a,b) = C n B(a, b)is relatively open in B(a, b), for (a,b) € S.
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Let u € (a,b). Then |u|(K \ {p}) =1 —u({p}) > 1 — b, and hence there is a continuous fon
Kwith—1<f<1,p¢&suppfand [ fdu >1—b,Sinceu({p}) >a.and u € C, u({p}) >
a and there is continuous g on K with 0 < g < 1,sup g N suppf = @ and gdu > a.

Let

V={v€B(a,b):jfdu>1—b,Jgdv>a.}

Then V is a neighborhood of u in B(a,b). Let us check that V€ C(a,b). If v €V, then
[ fdu > 1— b implies that |v|(supp g) < b,and since |v|({p}) > a, we get |v|(supp g\
{p}) < b —a < a/2.0n the other hand, [ gdv > a, and hence v({p}) > a/2 > 0, thatisv €
C.

Now, {u: u({p}) > 0} = {u: u/lul(K) € C} is Borel, since the map p — pu/|u|(K) is
Borel; hence, for any r > 0, the set

{w:p({p}) > r} = {u: [ulp}) > v} 0 {uw:n({p}) > 0}

is Borel, which ends a justification of (A).
(B) Now let us explain the Borel measurability of the map

A
(F) > f = f(oa), T

lla(Dl

(*)
Used in the proof of Proposition (2.2.8) .
We appeal to the following.
Indeed, let {B,, B,,+} be a countable base in Z. Then an open set inY X Z is of the form U =
U;(V; x B;), with each V; open in Y , and therefore w1 (U) = Uy(u™1(V;) nv™1(B))) isa
Borel set.
Now, the remark implies that the map.

(F, ) = ((f = £(0), D), A(0).80) = (f = (), (1, 2(0).60))
is Borel, and since (4,78,) — A — rd, is continuous, the map.

(f, 1) = ((f = f(e0),2) = A(). 8e5) = (f = f(0),0(2))

is Borel.
The remark also yields the fact that (f, 1) — ((f, 1), 1/llyll) = (, (4, 1/1IAl)) is Borel, and

since (4,7) — r, A is continuous, the map (f, 1) — ((f,2)/lly|l) is Borel .
In effect, the composition

o(d)
(£,2) = (f = F(e=), 0 (D) = <f ~fde A)”>,

that is, the map (), is Borel. Following Hansell [6], we call a Banach space E descriptive if
there is a collection € = U,, &, of subsets of E, where each ¢, is a relatively discrete cover of
(U &, weak) and for any x € E and € > 0 thereis A € € with x € Aand norm-diameter
(4) < e.

One can easily check that for any descriptive Banach space E, the duality map
(,): (E,weak) x (E*,weak™) — R is Borel-measurable and Borel (E, weak)=Borel(E, norm);
cf. [73], [53]. See [73], [74], [53], [56] for some important classes of compact spaces K
whose functions spaces C(K) are descriptive, No example is known of a Banach space E with
Borel (E, weak) = Borel (E, norm) that is not desriptive; cf. Oncina [88]. In all examples of
function spaces C(K) with Borel (C(K), weak)+Borel (C(K), norm) that we are aware of,
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there is a norm-discrete set in C(K) which is not Borel with respect to the weak topology. The
" discretization' argument used shows that this is always true for compact scattered spaces K,
but we do not know if this is true in general.

Burke [73] addresses the problem of for which spaces X it is true that if Y is any space
and e: X XY — R is separately continuous, then e is Borel measurable. Theorem (2.2.1)
shows that none of the infinite compact F-spaces X have this property. This partially answers
[73] Another related result is the following observation. Let X be a Baire p-space (that is, all
Gs — sets in X are open) without isolated points, let Y be the space of real-valued continuous
functions on X with the pointwise topology, and let e: X X Y — R be the evaluation map.
Then e is not C-measurable (being separately continuous).

Kenderov, Kortezov and Moors [84] constructed a continuous map @:FE —
(£, weak),defined on a compactly regularChoquet space which is not norm continuous at
any point of E. The construction is based on some special games discussed. The approach
used of yields a more direct construction, providing for any function space C(K) on an
infinite compact F-space K such a map @: E — C,,(K), where E in addition has weight 2o,
(The weight of the domain of the map in [84] is greater than 2No).

The reasoning can also be used to the following effect.
Proposition (2.2.10)[72]: Let K be a compact scattered space such that, for some p € K, K \
{p} has a continuous injection into a separable metrizable space.Then the evaluation
map(, ): (C(K), weak) x (£,(K),weak*) — R is Borel.

A variety of such compact spaces were constructed by van Douwen [91] and, under the
continuum hypothesis. By Kunen (cf. [87]). In particular, for Kunen's space K (the continuum
hypothesis is assumed), C,, (K) is hereditarily Lindelof, has weight X, and hence X, Borel
sets. On the other hand, C(K) has a norm-discrete set of cardinality &;; hence there are 2V
norm-discrete sets in C(K) .

It follows that Borel (C(K), weak)+Borel (C(K), norm).
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Chapter 3
Problem of R.V. Kadison and Maximal Injective Subalgebras

We exhibit the first concrete examples of maximal injective von Neumann subalgebras
in type Il, factors. We solve two old problems of R. V. Kadison on the embeddings of the
hyperfinite factor R.

Section (3.1): Maximal Abelian *-Subalgebras in Factors

For M be a factor von Neumann algebra and let N ¢ M be a subfactor. If M is the
algebra of all bounded operators on a Hilbert space ', M = B(A), then by the well known
theorem of von Neumann the bicommutant of N in M is equal to N. But if M is a continuous
factor then in general the bicommutant of N in M is not equal to N (see [98]). Actually it
seems that the typical and more interesting type of imbedding of N as a subfactor of a
continuous factor M is such that the commutant of N in M s trivial, i.e. N'n M = C. For
example, let a: G —» Aut (N) be a properly outer action of the discrete group G on N. Then N
is naturally imbedded in the crossed product algebra N x G and by the relative commutant
theorem we have N'n (N x, G) = C.

A sufficient condition for a subfactor N of the factor M to have trivial relative
commutant is that there exist an abelian *-subalgebra A ¢ N which is maximal abelian in M.
(Indeed, becausethen N'NnM c A'nM = A c N, sothat N'n M = C,N being a factor).

We show that under certain conditions Kadison's problem has an affirmative answer.
The main result is the following. Let M be a separable factor and let N € M be a semifinite
subfactor such that N’ n M = C and such that there exists a normal conditional expectation of
M onto N.

Then there exists an abelian ,*-subalgebra A in N which is maximal abelian in M and
which is semiregular in N (i.e. the normalizer of A in N generates a factor). In particular if M
IS a separable type II; factor then there exist normal conditional expectations onto all its
weakly closed= subalgebras, so that if N is a subfactor in M with N’ n M = C then there
exists a semiregular maximal abelian subalgebra of N which is also maximal abelian in M.
We also show by a counterexample that the hypothesis of separability is essential: if M® is
the algebra defined as in [96], [101], for a non T typell; factor M and for a free
ultrafilterw on N, then by a theorem of A. Connes M’ N M® = C, but no maximal abelian
subalgebra of M is maximal abelian in M.

We show some technical results concerning the algebraic condition N’ N M c N, which
is the natural generalization of the condition N'n M = C for the case when N is not a factor.

We mention some consequences of the main theorem and we give the counter example
for the nonseparable case.

In what follows M will always denote a von Neumann algebra of countable type. All
the subalgebras of M that we shall consider here will be selfadjoint, weakly closed and will
contain the unit of M.

Let ¢ be a fixed normal faithful positive form on M. For x € M we denote by [[x|[, =

@(x*x)/? the Hilbert norm on M given by the scalar product (x,y) = @(y* x). Denote by
H othe Hilbert space obtained by the completion of M in the norm I I,
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Let B € M be a subalgebra and E: M — B a normal conditional expectation on B, with
@oE = @. Then for xe Mandy € B we have @(xy) = @(E(xy)) = ¢(E(X)y), so that
@((x—E(x))y) = 0. Thus x — E(x) is orthogonal to B in the Hilbert spac {, and E(x) €
B is the orthogonal projection of x on the closureB® of B in Hy" In particular it follows that
the conditional expectation E is uniquely determined by the condition @ 0 E = ¢.
Definition (3.1.1)[92]:A subalgebra B € M is ¢ compatible with M if there exists a normal
@ preserving conditional expectation of M onto B. By the above remarks this conditional
expectation is unique and will be denoted by E‘Bf’ :

If B M is ¢ compatible with M then E‘,f(x) € B is the orthogonal projection of x on
B® c H,, so that if B, c By ¢ Mareg compatible with M then Eg o Ef =Eg and
||E‘B"2(x)||(p = ||E]‘3"1(x)||(pfor all x € m. If in addition A; c A, c B, are also ¢ compatible
with M, then

8,00 - X, o] = [[E5,00 - EZ, 000

As usual M? = {y € M|p(xy) = @(yx) for all x € M} will denote the centralizer of ¢ in M.
By the Pedersen-Takesaki theorem M? may be also characterized as the fixed point algebra
of the modular automorphism group oﬁ’, t € R, associated to ¢(see [103], Chap. 2).

Recall that by the Takesaki theorem on the existence of conditional expectations,B c M is ¢
compatible with M if and only if B is invariant under the modular automorphism group of M
associated with @,i.e.c(B) = B,t € R (see [103], Chap. i0). Since o, (x) = x forx €
M® ,t € R, it follows that any subalgebra B ¢ M? is ¢ compatible with M. Moreover if y e
M commutes with B, then o, (y) commutes with o (B) = B so that 7 (B'n M) =B'n
M, t € R. Using again Takesaki's theorem it follows that B’ N M is ¢ compatible with M.,

The following lemma gives a criterion for commutative subalgebras in M® r to be maximal
abelian in M. The proof may be easily deduced from [94]. However we give here a complete
proof for the sake of completeness.

Lemma (3.1.2)[92]:Let {A;}ic; be an increasing net of finite dimensional .-subalgebras in

M¢® .Then A = U,A¥ is maximal abelian in M if and only if ”E;p,nM(X) — E‘p,(x)” -
1 t @
0,forallx € M.
Proof: Since A ¢ M? it follows that A and A" N M are ¢ compatible with M. Note first that
Ni(A; N M) = (U;jA;))’' nM =A"nM and since {A;}ier, is increasing and {A; N M}i¢; is
decreasing, it follows that the nets {Ejfi (X)}ier and {EI‘;’{W(X)}iEI are Cauchy nets in H,,. We
show that
(i) ||E;ft(x) - E;\p(x)”(p —0,x €M.
(ii) ||E§{nM(x) - E;f,nM(x)”(p —0,x € M.
Since Ejft(x) is the orthogonal projection of E (X)on A; = A?, it follows that
|EL 0 - E;\"t(x)”q) = inf{EL0 — yll, ly € A
By the Kaplansky density theorem we get:
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0 = inf{|[EX () — v,

ye| Jad = inf infglELGO — il Iy € A = |EZ00 - EX.Gl,

— liim||EX(X) - EK(X)”(I),
and the proof of (i) is completed.
To prove (ii) remark that the net {E;"{OM(X)}H Is bounded in the uniform norm, so that

it has limit points in the weak topology on M. Moreover since the weakly closed algebras
A N M decrease to A’ N M, any weak limit point of this netisin A'n M. Lety, € A'nMbe a
w-limit point of {E (X)}1e1 In particular it follows that the net {@((x —y,)* (EA m®

Voliet Nas 0 as a Iimit pomt. Since (poEA{nM = ) We obtain that
P(E , ((x— y,)" (ES () = y)))
= O (G 30 €, 00— v = [[EG 00w
has 0 as a limit point and since it is Cauchy it follows that ||EZOM(X) - Y, ”(p — 0 and finally

5500 = BR[| 1 = [l£5,00 = ]|~ 0

The statement follows now easily since A ¢ M is maximal abelian if and only if A'n' M = A,

or equivalently Ey = E;, .

We point out that by the normality of the conditional expectations E?, arqy @nd
Ex ifED ., (X) = EZ(X) for all x in a total subset of M then E}, = Ey , so that to decide

that A is maximal abelian in M it is enough to have ”EA’nM(X) — Efl(X) ” — 0, for xina
: @

total subset of M.
Remark that for A, = M?, finite dimensional and abelian, E;{’O,Ez uare given in the

following way: if e, e,, ..., e,, € A, are the minimal projections of A, and x € M, then
n
p(ejxe;) ..
¢(e;)

=1
n
AoﬂMX) = Z €;X€;.

i=1
Note also that any abelian von Neumann algebra A may be obtained as the closure of an
increasing net of finite dimensional ,*subalgebras. If A is separable then A is single generated
and it can be obtained as the closure of an increasing sequence of finite dimensional abelian ,-
subalgebras.

Let M be a yon Neumann algebra of countable type and let cp be a fixed normal
faithful positive form on M. We shall prove some characterizations of the property N'n M c
N, in the case N € M® . Since the condition N'n M c N is equivalent to N'n M = §(N), the
center of N, it follows that if N is a factor and N' N M < N then M is a factorand N' N M =
C.

ES (x) =
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We point out that M? is a finite algebra, since the restriction of ¢ to M? is a faithful
trace. Thus N © M is necessary finite.

First we show that the condition N'nM c N can be localized by reduction with
projections in N. Recall that if e is a projection of the von Neumann algebra M c B(H, then
the reduced von Neumann algebra of M with respect to e is the algebra M, & eMe c B(eH).
The commutant of M, in B(eH) is M’ e c B(eH).

Lemma (3.1.3)[92]: If Nc Mand e € N is a projection, then (N.)' n M, = (N' N M),. In
particular if N and M are factorsand N’ n M = C, then (N.)'Cn M, = C.

Proof. The inclusion (N’ n M), © (N,)'c N M, is trivial. For the opposite inclusion le z(e)
be the central support of e in N and let x € (N.)' N M,. Since (N.)" = N'e, there exists x’ €
N’ such that x'e = ex'e = x € eMe. We show that xz(e) € M.

Let f € N be a projection, maximal with the properties that e = f = z(e) and x'f €
M.Ifz(e) — f # O, then (z(e) — f)Ne # O and it follows that there exists a partial isometry
v € N such that v« v = e and vv *= z(e) — f We have M 3 v(ex'e) v*= vx'v* = x'vv*, 0O
that x"(vv* + f) € M, which contradicts the maximality of f It follows that f = z(e), so that
x'z(e) € Mand x = ex'e = e(x' z(e))e € e(N' N M)e.

Lemma (3.1.4)[92]:Let N € M® be such that NNM c N. Given € >0 and x € M,x #

0, x p-orthogonal to N (i.e. such that Eﬁ(x) = 0), there exists a unitary u € N such that
luxu* —x|I5, > (2 — &) [IxII5,

Proof :Denote by K, = co" {vxv" |v unitary in N}. First we show that 0 € K.

Since K is a weakly compact convex subset of M, by the inferior semicontinuity of the norm
Il Il it follows that there exists an element y, € K, such that

Iyolle = inf{llyllyly € Ky}
Since Il I, is a Hilbert norm and K, is conve, it follows that y, is the unique element in K,
with this property. But v K,v* c K, for all unitaries v in N. In particular vy,v*eK,. Since v €
M® we have |lvyov*|ly, = llyolle, SO that vyov* =y, for all unitaries v in N. Consequently
yo € N'Nn'M c N. By the hypothesis, N ¢ M® and x is orthogonal to N, so that @(vxv*y) =
o(xv*yv) = 0forally,v e N. It follows that all elements in K, are orthogonal to N. Thus
yo € N and y, is orthogonal to N, thatisy, = 0.

Suppose now that ||vxv* — x||(2P = (2- s)||x||(2p for all unitaries v in N. We obtain that
lvxv* [ + x5 — 2 Rep(x*vxv*) = (2 — ¢)[Ix||5, so that 2 Rep(x*vxv*) = &||x||5, for all
unitaries vin N. Thus we get 2Req(x*y) 2 ¢, ||x||;, for every y € K, and in particular 0 =
el|x||2 , which is a contradiction.

Lemma (3.1.5)[92]: Let N € M® be suchthat NN M c N.Ife > 0and x, ..... Xp E M, x; #
0, are -orthogonal to N, then there exists a finite dimensional abelian * -subalgebra A, € N
such that

”Eig)nM(Xi)”(p <ellxllg 1=i=n.

Proof: Consider first one element x € M, x orthogonal to N. By the preceding lemma there
exists a unitary u € N such that [juxu® —x||, > [|x|l, . Choose e;,e,,...,es € N to be
spectral projections of u, such that e; + e,+...4+e, = 1 and such that for suitable scalars
Ao Ay, A = 1, we have [|X5-; Aje; — ul|small enough to ensure that
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S

N
(Z ?\iei> X 7\]6] —u —X = ”X”(p
i=1 j

—
0]
Since e; € M?, the elements {e;xe;};<; =, are orthogonal in 3, and by the inequalities 2 =

| LA — 1], we get:
4lIx112 — 4 z eixe;

i

2

10 i#j

2 S S
= (Z }\iei>x 27\]9] — X
i=1 j=1
@

From the first and the last terms of the inequalities we get:

2
z €;Xe;4

i

=

Z (}\17\] — 1)eixe]-

i#j

= [Ixll%

[0)

= 3/MIxIIG
‘e
For the general case, suppose that m =1 is such that (3/4)™ < €2. Lete,,...,es € N be

mutually orthogonal projections and 1 = k = n, p < m be such that:
S 2

Z eixjei

i=1

=< (3/4)m||xj||fp, forj < k,

@

s 2

Z €iXk€i

Applying Lemma (3.1.3) ,and the first part of the proof for each pair of algebras N,
(M,)®ei, and the element e;xye; € e;Me;, which is ¢, orthogonal to e;N,, we get a set of
pairwise orthogonal projections f;,....,f, € N, refining e;, ..., e and such that:

t 2 s
> il =G/ ) el
S
= (3/4) ) llewsyeilly, < (3/4P ixi I
i=1

Since each e; is the sum of some f; we also have forj < k:
z eiX]-ei

t 2 2
z finfi =

2
< @3/4 |2
By induction, we get a finite set of projections g4, ..., g; in N, mutually orthogonal, such that:

= (3/4)PlIxkllG

S

®
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2

2 2 .
> e = G/ 7 < &l foralll = = n.
i=1
@
Taking A, to be the algebra generated by {g;},<i<; the statement follows.

Theorem(3.1.6)[92]: Let M be a von Neumann algebra of countable type with a faithful
normal positive form ¢.Let N ¢ M® be such that NNnM c N. Ifx; ....,x, € Mande >
0, then there exists a finite dimensional abelian *-subalgebra A c N, such that

”EAOM(Xi) - EX(Xl)”(p <é¢g ,i = 1, e, n
Moreover, if M and N are factors and N' N M = C, then A can be chosen such that its
minimal projections are equivalent in N.
Proof: Denote by ¢’ = (1 + X 1||x1||(p) Letx{ = Ep(x)),x{ =x;—x{,i=1,..,n
By Lemma (3.1.5) we get a finite dimensional, abelian *-subalgebra AocN such that

S i |(p <@ /2) 15 lgi=1,...,n.

Let {e;}; € A, be the minimal projections of A,.

Consider the algebra N, and take a maximal abelian ,-subalgebra in N, (there is one by
Zorn's lemma). Apply Lemma (3.1.2) for N, and this maximal abelian subalgebra to obtain a
finite dimensional abelian ,*subalgebra A; < N, such that:

|ES, < (&' /2) [eader] i = 1,..om

€j

If we let A = 3; A;,then A c N.Since x;) are also in N we get:

1B () = EZ GO, = 1B (%)) - E“’(X-’)Ilfp
ZHEAnNe (exe) E (exe)”
s /4)lee wel; =@/l ||

Finally we get:
IE R ana (%) = Ex Gl
< 1B 05) = ESGI + TES oG = ESC
= (/2 |5l + || ERom () — B2, () |(p
= eIl K1) =), <& 1550
It is not hard to see that if N is a factor then we can modlfy a such that its minimal projections
have rational trace in N and such that the above inequalities still hold.
Taking an appropriate refinement of A the last part of the statement follows easily.
For the results M will allways denote a separable von Neumann algebra (i.e. with

separable predual).
The next definition was first introduced by J. Dixmier (see [97]).
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Definition(3.1.7)[92]: Let M be a factor and let A ¢ M be a maximal abelian *-subalgebra of
M. Denote by . V' (A) = {u € M|u unitary,uAu® = A} the normalize of A in M and by V'(A)
the weakly closed .-subalgebra generated by V' (A) in M (in fact N(A) = span“ N (A)). If
N(A)=M then A is called regular. If N(A) is a subfactor of M then A is called semiregular.
Theorem(3.1.8)[92]: Let M be a separable factor and let N M be a semifinite subfactor of
M. Suppose that N’ N M = C and that there exist a normal conditional expectation of M onto
N. Then there exists a maximal abelian *-subalgebra A in N which is maximal abelian in M
and which is semiregular in N.

If in addition N is hyperfinite then A may be chosen to be regular in N.
Proof: Let E: M — N be the normal conditional expectation. By a result of A. Connes, E is
unique and faithful (see [103], Prop. 10.17).
Note that if N is a type | factor and N’ n M = C, then N=M and the statement is trivial. Thus,
we have to prove only the case N is of type Il.Suppose N is of type II; and let {x,},> be a
total sequence in M. If T isthe trace on N, then let @ = Tt °E. Since t and E are faithful, ¢ is
faithful, and clearly N ¢ M? . Using Theorem (3.1.6) we construct recursively an increasing
sequence of matrix subalgebras{N,},> of N, each of them with a set of matrix units
{e5j}1=i j=k, such that:

ky
M) el =1,
i=1

(ii) every ef, for p = n, is the sum of some efy,

(iii) if A, denotes the diagonal algebra generated by {ej}},< <k then
@ @ - :
[EL, o) - EAn(x]-)”q) <27 15j<n
Suppose this construction is done for 1 = n = m.
Lete =e]j € A, € N, © N be a minimal projection in A,,. Since (N.)' "M, =C,
we can apply Theorem (3.1.6) to obtain a finite dimensional abelian ,*-subalgebra A, in N,
such that

Pe m my _ p®e .m m < 1,—19—-(m+1)
”EA;lnMe(eli xieir) — Ex (e xxeir) ”(p = K 2
e

k=1,2,...m+ 1,i=12.....k, .
Suppose all the minimal projections of A, are equivalent and let {eg };<=gx<, b€ Matrix
units in N(which is a factor) such that {ejy };< k =p generates Ay. Take N, © N to be the
matrix algebra generated by the matrix units

m+1 def r.m -
{eij 151,jSKm41 - {eskeij }1§],]§km ’

1=Ss,k=p
as is easily seen we have
Km
m+1 — — m m
span{ejj P Api1 = Z ei; Aoey
i=1

and for x € M we have

71



[ES G- EAm+1<>||fp=.Z||E;"enM (elxicell) — Ef (ehxkelnll
i=1

By the inequalities (*) we get:
”E(pmﬂnM(X]) EAm+1(Xi)|| S Ko kit 270D = 27D =1 om +1.

Thus, if A = Up>; AW, R = Up>; NY, thenR c N, A is a maximal abelian ,*sub-algebra in
M by Lemma(3.1.2) and clearly A is regular in R.
Consequently, if N(A) denotes the algebra generated by the normalizer of A in N, then A c
R © N(A), so that the center of N(A) is included in R. It follows that N(A) is a factor, since R
Is a factor.

Suppose now that in addition N is hyper finite and let {Y, },>, be a total sequence in N.
We construct recursively an increasing sequence of matrix
subalgebras {N,}n> 1 in N, with matrix units {ej};<; <k, such that the preceding conditions

(i), (i1), (iii) hold together with the condition
(iv) ||y; — Eﬁn, (y]-)||(p =2™"1=j=n.
Suppose this construction is done for 1 = n = m. As before, we can get a matrix algebra
N2 ., such that N,, € N2 ., © Nand such that conditions (i), (ii), (iii) are fulfilled. Since N
is hyperfinite we can take a matrix subalgebra N,,..; in N,N,,,; © N2 .,,) also holds.

IfA = U,A¥and R = U, N, then A is regular in R and by condition iv), R = N.

Suppose now that N is of type II,. Lete € N be a finite projection of N. If H is a
separable infinite dimensional Hilbert space, then M is isomorphic to M. ®B(# )and the
inclusion of N in M becomes the inclusion N.®B(H ) € M. ®B(H )By Lemma(3.1.3)
(No.)' n M, = C and the restriction of E to M, gives a normal conditional expectation from
M.onto N,. By the first part of the proof it follows that there exists an abelian *-subalgebra
A; in Nowhich is maximal abelian in M e and whose normalizer in N e generates a subfactor
N(A;) € N.,.Let A, € B(H ) be an atomic maximal abelian subalgebra_in B(H ) Then A,
is regular in B(H ). It follows that A= A; ® A, c N, ®B(H ) is maximal abelian in
M.®B(H ) and the normalize of AinN, ®B(H ) generates a factor (this is in fact
N(A,®B(H)). If N is hyperfinite then by Connes' theorem N, is the hyper finite 11, factor
and applying again the first part of the proof a may be obtained to be regular in N.
Theorem(3.1.9)[92]: Let M be a separable von Neumann algebra and let N c€ M be a
semifinite von Neumann subalgebra of M. If NN M c N and if there exists a normal
conditional expectation of M onto N then there exists a maximal abelian * -subalgebra in N
which is maximal abelian in M.
Proof: Since N'n M c N, it follows that the normal conditional expectation of M onto N is
unique (see [103], Prop. 10.17). Let {e,, },,=1 be a sequence of finite projections in N such that
Ynen = 1. For each pair of algebras N, < M, ,k = 1, using Theorem(3.1.6) and arguing as
in the first part of the proof of Theorem (3.1.8) it follows that there exist a maximal abelian .-
subalgebra Ay of M,,, contained inN,, . Then A =} A, is a subalgebra of N and it is
maximal abelian in M.
Examples(3.1.10)[92]: (i) By Takesaki's theorem a sufficient condition for the existence of a
normal conditional expectation of M onto a subalgebra N, is that N is in the centralizer of
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some normal faithful state on M (note that in this case N is necessary finite). In particular if
M is a type I, factor then there exist normal conditional expectations onto all its von
Neumann subalgebras. Thus, if M is separable N ¢ M and N'n M = C, then by Theorem
(3.1.8) there exists a semiregular maximal abelian subalgebra in N which is maximal abelian
in M.
(i) Let N be a separable semifinite von Neumann algebra and let a: G —» Aut(N) be a
properly outer action of the countable discrete group G. By the relative commutant theorem
we have N'n (N X, G) c N (see [103], Chap. 22) and since there is a normal conditional
expectation of N x, G onto N, Theorem (3.1.9) applies, so that there exists a maximal
abelian subalgebra A in N which is maximal abelian in N X, G. Moreover if N is a factor
then A may be chosen to be semiregular in N.
Proposition (3.1.11)[92]: Let M be a separable type Il factor and let A € M be amaximal
abelian *-subalgebra generated by finite projections. If A is semiregular then A is contained
in some hyperfinite subfactor of M, in which it is regular.
Proof: Let .V (A) be the normalizer of A in M and N(A) the weakly closed subalgebra
generated by V' (A).
Consider the groupoid g = {v € M|v partial isometry of the form v = up,u € N(A4),p €
A}. First we show that given two finite equivalent projections, e, f € A,ef = 0, there exists a
partial isometry, v € g, suchthat v* v = e, vv* =f .

Denote by g the family of pairs (p, w), where p € A,p = e, and w € ¢, such that
w*w = p and ww™ = f Define a partial order in g by (Py, W,) < (Py,w,),ifP, =P, P, +
P, W, = w;P,. By Zorn's lemma we obtain a maximal totally ordered family in . Such a
family has a countable cofinal subfamily so that it clearly has a maximal element (p’, v").
Suppose p’ # e and denote p" =e —p',q" = f —v'v' *. (Note that p" is equivalent with
q"in M.)
If p"u*q"u = 0O for any unitary u € V' (A) then the projection
g = V{u*q"ulu €. W (A)} € A satisfies p"g = 0 and * gu = g for all u eN'(4). It follows
that g is a nonscalar element in A which commutes with V' (A)and thus it commutes with
N(A) = span"” NV (A). This is a contradiction, since V'(A)) is a factor.
Ifp"u*q"u = P, # 0 for some u € NV'(A) then Po = P",up, is in the groupoid g and v’ +
uP, is also ing. Thus o 3 (p' + py V' + upy) > (p’, v"), which is in contradiction with the
maximality of (p’,v"). Thusp' = v v' =e,v' v"™* = f,v' €g.

We prove now the proposition in the case M is of type I1; .

Let t be the trace on M and let {a, },>; < A be a total sequence in A. We construct by
induction an increasing sequence of matrix subalgebras {M,,},,=; of M, each of them with a
set of matrix units {e;;}1<; j=,,, such that:

(a)Zl 1 u

(b) ej} arein the groupoid g, for all n, i, j,

(c) every ey, , for p < n, is the sum of some e,

(d) if A. denotes the diagonal algebra generated by {e;i}; <; <,,-» then 4, € A

and
a; —Et (a; =2 1 =j=n.
|| ] An( ])”t J
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Suppose this construction is done for n = m.
Consider the elements {el}a;efl}} 1sisk,, Wwhich are in efidelt (since ef} €
1Sj=m+1
¢).Let{e';p}1<p<s D€ equivalent projections in efAeft Y-, ey, = eq; such that if 4y =
span {e',p}1<pesthen
leftajelt — Ef (eftqelt)||, S k2= 1S iSky 1SjSm+ 1

By the first part of the proof it follows that we can complete the set {e,,,},, to a set of matrix
units {ey, }1<pr=s in the groupoid .

If {e{]’-‘“}léi,jékmﬂ el {e;,re{}‘} 1=pr=s and My, is the algebra generated by

150,jSky,

{e{}l“}lgi,jékmﬂthen conditions (i)-(iv) are clearly fulfilled.
If B = Up=14y and R = U,> My’ then R is hyperfinite, B is regular in R and by
condition (iv), B =A.
In the case M is a type 11, factor, there exists a sequence of finite projections {e;, },,>1. In A,
which are equivalent in M, such that },,>, e, = 1 (this is because A is generated by finite
projections and because it has no minimal projections). Now we can apply the first part of the
proof for pairs of projections e,, e,,; 1, and the type II; case, to conclude also the type I1,,
case.
Corollary (3.1.12)[92]: Every separable type Il factor M contains a hyperfinite subfactor R
suchthat ' n M = C.
Corollary (3.1.13)[92]: Every separable type Il factor M has a maximal abelian *-subalgebra
which is regular in some hyperfinite subfactor of M and thus, in particular, it is semiregular in
M.

We mention that the existence of semiregular maximal abelian ,*-subalgebras in
factors was recently shown to be important in connection with the Stone-Weierstrass
theorems for C*-algebras, in [93].

We construct a counterexample for the nonseparable case. Let M be a separable type
11, factor with finite trace T and w a free ultrafilter on N. Denote by M the quotient of the
von Neumann algebra I (N, M) by the zero ideal of the trace . defined by 7, ((x,),) =

111_{2) T(x;) (see [96], [101]). Then M is a finite factor and M is canonically imbedded in

M®. By a well known result of A. Connes ([95]) if M has not the property I' of Murray and
von Neumann, then M’ n M® = C. But if A ¢ M is any abelian .-subalgebra in M then A is
far from being maximal abelian in M®. This follows easily by a direct argument. It is also a
consequence of the following:

Proposition(3.1.14)[92]: If M is a type II; factor then no maximal abelian *-subalgebra of
M® is separable.

Proof: Denote by m,the natural projection of [ (N, M)) onto M® Let B ¢ M® be a maximal
abelian *-subalgebra and suppose B is separable. Then B is generated as a weakly closed .-
subalgebra by a positive element a € B. Let (a,),>; be a sequence of positive elements in
M, with r, ((a,)n=1) = a Take 4,, € M to be a maximal abelian .subalgebra in M such that
a, € A, Denote byBthe subalgebra of all sequences (by),=; in [®(N, M)with b, € A,,. Then
, (B) is commutative and z,, (B) > B so that m,, (B) = B.
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Since M® is a continuous factor and B is maximal abelian and separable, one can find
projections {ey ,}on=k=1 C B such that:

n=0

(i) span® {exn}kn =B
(i) ty(exn) = 272" Z2kZ21,nZ20
(iii) ez 10 + €29kn = €kn 1N = 1. B
Moreover one can choose by induction over n and k, sequences (e, )=, Of projections in B
such that:
(V) Ty ((e)m) = exn 2" 2k =2 1,n =0,
(Vi)r(egp.)=2"",2"Z2k=Z21,n>0m=1,
(Viegk—1n tekn =€n-p2"ZkZ1n=1m=1

Take now e™ = Y™ ell_; ,and denote by e = m,((e™)y,). Then e € m,,(B =B
and t,(e) = 1/2.

Moreover 7, (eex,) = (1/2) 1, (e ) for all k, n so that 7, (ex) = (1/2)7,(x) for
all x € B. In particular ,(e) = t,(e.e) —(1/2) t,(e) = 1/4 which is a contradiction.
It can be shown that the image by mr,, of any maximal abelian *- subalgebra of [ (N, M) is
maximal abelian in M“ Indeed, let B be maximal abelian in [®(N, M). Then it is easy to see
that there exists a sequence {A4,},>; of maximal abelian .-subalgebras in M such that
B = {(a,), €I°(N,M)|a, € 4,}}. Let (x,), € [®°(N,M)be such that x = m,((x,),)
commutes with B = ,,(B).Let x, = E; (x,)and x = x, — x;, Then x" = m,,((x3),,) is in
B and x" = m, ((x;)),,) satisfies t,,(x"'y) = 0 forall y € B and x"’ commutes with B. By the
Theorem (3.1.6), for x,, and A,, = A;, N M we can find a unitary u,, in 4,, such that

i — 2l = 2 = 1/7) 1= [ 12

Ifu=m,((u,),) € B then it follows that u commutes with x"" and ux"u* is orthogonal to x"
which is a contradiction, unless x" = 0. Thus x = x’ € B and B is maximal abelian.

The above proof works also for the similar statement of the more general situation of
an ultraproduct algebra of a sequence of arbitrary finite factors.
Corollary (3.1.15)[260]: Let N c M® be such that NNNM c N. Given £ >0 and x? €
M, x% # 0, x? ¢-orthogonal to N (i.e. such that Ey, (x?) = 0), there exists a unitary u? € N
such that

lux?u® — x5, > (2 =€) x5,

Proof :Denote by K, = co% {v?x%v?* |v? unitary in N}. First we show that 0 € K 2.

Since K,z is a weakly compact convex subset of M, by the inferior semicontinuity of the
norm |l i, it follows that there exists an element y§ € K2 such that
Iyglly = inf{lly2llely? € Ky2).

Since Il |l is a Hilbert norm and K, is convex, it follows that y§ is the unique element in
K,z with this property. But v? K .v?* c K, for all unitaries v in N. In particular
v2yév?*eK, 2. Since v2 € M® we have ||v2y§v2*||(p = 1§l . so that v* y§v** = y§ for all
unitaries v2 in N. Consequently y2 € N'NM c N. By the hypothesis, N ¢ M® and x?
orthogonal to N, so that @(v2x?v?*y?) = @(x?v?* y?2 v?) = 0 for all y2,v2 € N. It follows
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that all elements in K, are orthogonal to N. Thus y& € N and y3 is orthogonal to N, that is
2= 0.

o Suppose now that [[v?x?v** — x2[|g = (2 — €)||x?||3, for all unitaries v* in N. We
obtain  that [|[vix?v* |3 + ||x2||2 2 Re(p(xz* 2x2v*) = (2—9)|Ix*|I; so that
2 Req(x** v2x? 2*) = s||x2||2 for all unitaries v2inN. Thus we get 2Req(x?*y?) =
g, [|lx?]|5 for every y* € K2 and in particular 0 2 ¢||x?||Z, , which is a contradiction,
Corollary (3.1.16)[260]: Let M be a von Neumann algebra of countable type with a faithful
normal positive form ¢" . Let Nc M® be such that NNnMcN. If x; ....,x, €
M and € > 0, then there exists a finite dimensional abelian *-subalgebra A c N, such that

PN omersd

T
Moreover, if M and N are factors and N’ N M = C, then A can be chosen such that its
minimal projections are equivalent in N.

Proof: Denote by ¢’ = e(1 + Z?=1||xi||(pr)_1. Let x! = E,‘(,’T(xi),x{’ =x;—x},i=1,..,n
By Lemma (3.1.5) we get a finite dimensional, abelian *-subalgebra AocN such that

E<Pr ( 7 < g_’ “ u“ =1
AgﬂM X; = > X; " tl=1,...,n.
r r

Let {e;}; € A, be the minimal projections of A,.

Consider the algebra N, and take a maximal abelian ,-subalgebra in N, (there is one by
Zorn's lemma). Apply Lemma (3.1.2) for N, and this maximal abelian subalgebra to obtain a
finite dimensional abelian *subalgebraA C Ng,, such that:

2. efouleae) = e o], S €' 12) D eweli =1

If we Iet A = );A;,then A c N.Since x; ) are also in N we get

28 = B DI, = | ) = B G

IEEIHMM@xﬂ £ @xﬂH
;{ZJZZjWWMQF{IXanu

<£, i=1,..,n

Finally we get:
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Section (3.2): Factors Associated with Free Groups

A von Neuman algebra Aacting on a Hilbert space # is called injective if there exists a norm
one projection from the Banach algebra of all linear bounded operators on H onto A. As the
injective von Neumann algebras form a monotone class, any von Neumann algebra has
maximal injective von Neumann subalgebras.

We exhibit the first concrete examples of maximal injective von Neumann subalgebras

in type I, factors. As a consequence we solve two old problems of R. V. Kadison on the
embeddings of the hyperfinite factor R.
First we show that if L(IF,)) is the type II, factor associated with the left regular representation
A of the free group on generators F,,,0c0 > n > 2, and u is one of the generators of F,then
the abelian von Neumann algebra generated in L([F,) by the unitary A(u) is maximal
injective. So, quite surprisingly, a diffuse abelian von Neumann algebra can be embedded in a
type II; factor as a maximal injective von Neumann subalgebra. We show that any von
Neumann subalgebra of L(IF,) that contains A(u) is a direct sum of an abelian algebra and of
a sequence of full factors of type II;. This solves in particular Problem 7 in [116], by
showing that A(w)is not contained in any hyperfmite subfactor of L(F,).

We show that if [F,, acts freely on some nonatomic probability measure space (X, u) by

measure preserving automorphisms and if M denotes the associated group measure algebra
and R,,, denotes the injective subalgebra of M corresponding to the action of the generator u €
[F,, then R,, is a maximal injective von Neumann subalgebra of M. Choosing suitable actions
of F,, on (X, u) we show that R, can be any injective type II; von Neumann algebra.
Finally, using some of these examples we construct maximal hyperfinite subfactors with
nontrivial relative commutant. The set of hyperfinite subfactors of a type II; factor was
showd to be inductively ordered in [98], but until now it was not known whether a maximal
hyperfinite subfactor may have nontrivial relative commutant (cf. [116], Problem 81). We
mention that by [92] any separable type Il, factor has a maximal injective von Neumann
subalgebra with trivial relative commutant and thus amaximal hyperfinite subfactor with
trivial relative commutant.

The proofs of all the results are based on the study of the asymptotic behaviour of the
Hilbert norms of some commutators in crossed product algebras by free groups. These
estimates will be used in the framework of McDuff s ultraproduct algebras M® [101].
Although the proofs depend on the specifid properties of the free groups, they can be easily
extended to give similar results for free products of von Neumann algebras.

(pT

(p‘l"
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The variety of examples of maximal injective subalgebras that we found suggests the
following natural problem: classify up to isomorphism all the maximal injective von
Neuamnn subalgebras of a given type II,factor M. It seems to us that in fact the list of
maximal injective von Neumann subalgebras is the same for all nonhyperfinite type II;
factors M, more precisely, that any completely nonatomic injective finite von Neumann
algebra can be embedded in M as a maximal injective von Neumann subalgebra.

A von Neumann algebra A is called injective if whenever acting on a Hilbert space
it is the range of a norm one projection fromB(H), the algebra of all linear bounded
operators on H (see, [103], Chapter X;). In [96] A. Connes showd that a separable von
Neumann algebra is injective if and only if it is approximately finite dimensional, i.e.,
generated by an ascending sequence of finite dimensional *subalgebras. In particular this
shows that the hyperlinite type 11, factor R is the uniqueseparable injective factor of type II;.

Let M be an arbitrary von Neumann algebra. A von Neumann subalgebra B of My is
called maximal injective if it is injective and if it is maximal (with respect to inclusion) in the
set of all injective von Neumann subalgebras of M': Since injective von Neumann algebras
form a monotone class, it follows that the set of injective subalgebras of M is inductively
ordered, so that by Zorn’s lemma any injective von Neumann subalgebra of M is contained
in a maximal injective von Neumann subalgebra of M.

If B is maximal injective in M then B is singular in M, i.e., its normalizer in M is
reduced to the unitaries of B. Indeed, because if w is a unitary element in M and WBW* =
B then the von Neumann algebra generated by B and w in M is also injective (see [103]) so
that w € B by the maximality of B. In particular it follows that B n M c B.

Throughout M will be a finite von Neumann algebra with a fixed normal finite faithful
trace 7,7(1) = 1.If Bc M is a von Neumann subalgebra then Eg denotes the unique
normal t-preserving conditional expectation of M onto B. Denote by ||x||, = T(x*x)'/? the
Hilbert norm on M given by 7 and let L?(M, 1) be the Hilbert space of square integrable
operators affiliated with (M, 1), so that L>(M, t) is the completion of M in the norm || |l,.
Then Eg is in fact the restriction to M of the orthogonal projection of L?(M,t) onto the
subspace L*(M, t|g) (which is the closure of B in L*(M, 1)).

Remark that M acts an L?(M, 7) by left and right multiplication.

Two von Neumann subalgebras B,, B, of M are called mutually orthogonal (B; L B,) if
t©(by by) = t(by by) = ©(by) t(b,) for all b, € B,, by € B,, [121].This is in fact
equivalent with the orthogonality of the Hilbert subspaces L*(B; L B,) ©
Cand L*(M,t|p,) © CinL*(M,T).

In [121] we showd that if B ¢ M is a von Neumann subalgebra and w € M is a

unitary element such that for any € > 0 there exists a partition of the unity (e;); in B with
(e)) < g foralli, and WA, w* L B,where A, = Y, Ce; then w is orthogonal to B and to
B’ n M. This result will be frequently used in the sequel. In connection with this device we
shall need the following:
Lemma (3.2.1)[104]: If M is a type II; von Neumann algebra and A < M is a maximal
abelian *-s&algebra of M, then for any n > 1 there exists a 2™ dimensional abelian *-
sualgebra A,in M orthogonal to A and with the minimal projections mutually equivalent in
M.
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Proof: It is easy to see that given any element z € Z < A (zis the center of M),0 < z <
1, there exists a projection in A with central trace equal to z.So, for z = 27" we can choose
recursively 2™ projections {e}; <;<,» in A, mutually equivalent in M and such that Y e =
1. Let My, € M be a 2™ x 2™ matrix algebra such that {e }, are its diagonal minimal
projections. By [121]there exists a maximal abelian subalgebra A; < M, orthogonal to A9 in
M, i.e., such that elee} = 27"e}, for any minimal projection e in A,,and 1< i < 2™ It
follows that E4(e) = 27" for any minimal projection e in A,, so that A,is orthogonal to A in
M.

We consider another relation between von Neumann subalgebras sclosely related to
that of orthogonality: we are interested in finding nice sufficient conditions for two von
Neumann sub algebras A, B to commute in conditional expectation, i.e.,E, c Eg = Eg o E,.
The next result will do:

Lemma (3.2.2)[104]: Let B,, B, be von Neumann subalgebras of M and suppose that the
group u = {w unitary in Bw[B,w" = B;] generates B; then Epr o Eprny = Epipy ©

EB2 = EB{nMZ-

Proof: For x € M,let Ky = co"{uxu*|u unitary in U}. Then K, is a convex weakly
compact subset of M and by the inferior semicontinuity of the application x — t ||x||, it
follows that there exists E(x) € K,, such that ||E(x)||, = inf {||y|l, y € K,}. Since || ||,is a
Hilbert norm and K, is convex it follows that E(x)is the unique element in K,, with this
property. Moreover, since U is a group, wE(x)w* € K, for allw inU and ||WE (x)w*||, =
|E(x)]|, so that wE(x)w* = E(x). Consequently E(x) e U'nM = B;n M and E is a
well-defined function from M to Bijn M . If xeB;n M then clearly K, =
{x}sothat E(x) = x. If x € M is orthogonal to B; N M (as an element in L?>(M, 7)) then
the set K,, is orthogonal to B; N M (since wxw™ is orthogonal to B; n M for all unitaries
w € U). This means that E(x) = 0. It follows that E(x) is the orthogonal projection of x
onto By N M thatis, E(x) = Eprny(X).

Now, for x € B, we get wxw* € B, for all w € U so that K, c B,, and thus
Epr o m(x) € By. Since we also have Epr )\, (x) € B N M we get Epr, ,(B3) € By NB;.
So, if p and g denote the extensions of Er , ,, and, respectively, Ep, to L*(M, 1) then the left

suppot of pq is equal to pA q. It follows that pg = p Aq = qp.
If w is a free ultrafilter on N then denote by M the quotient of the von Neumann
algebra [ (N, M) by the O-ideal of the trace 7, 7,((x,),) = lim t(x,). Then M is a
n-w

finite von Neumann algebra [101], [116], T, is anormal faithful trace on M® and M is
naturally embedded in M, as the algebra of constant sequences. Moreover if M is a type II;
factor then so is M“. For B ¢ M a von Neumann subalgebra we denote by B® ¢ M® the
von Neumann subalgebra of all elements represented by sequences in B.

Then Ego((x,),,) = (Eg(x,)), note that ife € M is a nonzero projection then (M,)® =
(M?®), a norm bounded sequence (x,,),, in M is called a central sequence if ||[x,, x]|l;, = 0
for all x € M. The central sequence (x,),, is nontrivial if lin}linfllxn — (x|l > 0. The

central sequences represent elements from M’ n M<; if the central sequence is nontrivial
then the corresponding element in M’ N M®; is nonscalar. Conversely if (y,,),, represent an
element in M" N M“;then one can take a subsequence(x,), = (¥i,)n, SUch that (x,), is a
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central sequence. Moreover if (y,), IS nonscalar then one can choose (x,,),to be nontrivial
[101].
Recall that a separable type I, factor M has the property I' of Murray and von Neumann if
for any x4,...,x, € M,e > 0 there exists a unitary element w € M such that t(w) =
0, 1[w,x,]ll, < &n = k= 1.[118] It is known that M has the property if and only if
M'n M® # C and that in this case M' n M®; is completely nonatomic. Also, by McDuff s
theorem M is isomorphic to M ® R if and only if M' N M®; is non-commutative. Moreover
in this case M’ N M®;is a typell, Il, von Neumann algebra [101]. By this result it easily
follows that M satisfies McDufP sproperty M ~ M ® R if and only if for any x;,...,x, €
M,e > 0, there exist unitary elements w, ,w, € M such that t(w,) =t(w,) = 0O,w;w, =
—wowy, [[wi, il <en = k = 1,0 = 1,2,

We shall use the following terminology for type II, factors:
(i) M is a factor if it satisfies the property of Murray and von Neumann;
(i) M is an ST factor if it satisfies Mc Duffs property;
(iii) M is a wr factor if it is a I factor but not an sI factor, or equivalently if M N M® is a
nontrivial abelian algebra;
(iv) M is a non T factor (or a full factor) if it is not a I' factor.
SinceR =~ R Q R,R is an sT factor. In fact it is known that R" n R®is a type II, factor
[111], [108].
If R, is a separable injective type II; von Neumann algebra (but not necessarily a factor) then
R, N R is also very large, in fact by [96] and arguing as in [101] it is easy to see that R, N
R§ is a type II; von Neumann algebra.

In [98] it was shown that the set of hyperlinite subfactors of a type I1,factor M is
inductively ordered. Similar results hold for I" and s I' subfactors so that we have the
following
(i) The sets of hyperfinite, I' and s I subfactors of M are inductively ordered with respect to
inclusion.

(ii) If N c M is a maximal hyperfinite, s T or I" subfactor then N’ N M contains no nontrivial
subfactors with the same unity as M.

(iii) If N is a hyperfinite (respectively a I') subfactor of M and u € M

Is a unitary element normalizing N and acting properly outer on N, then the von Neumann
algebra generated by N and u is a hyperBnite (respectively a I') subfactor of M. As a
consequence, if N'n M = C and N is a maximal hyperfinite (respectively a maximal I')
subfactor of M then N is singular in M.

The hypertinite case of (i)-(iii) is treated in [96] and [I0]. So let us show (i) for I" and
sI" subfactors. Since M is separable it is enough to consider increasing sequences of
subfactors. Suppose (Ny),are subfactors in M,N, € Ny,1,k = 1,and let N = U, N}’ .
Then N is a factor (since it has unique trace) and if x; ,...,x, € N,€ > 0, then there exist
kn=1 and elements x{,...,x3 € N, such that |x;—x?||, <e/2n=i 2
1. IN,_ is a T factor there exists a unitary elementw € N, < N suchthat 7(w) = 0 and
||x1 —xl-0||2 < ¢g/2,n=1i =1, so that we get [[x; —x;ll, < en=1i = 1. If N is an
ST factor then there exist unitary elements wy,w, € N, < N such thatt(w;) = t(w,) =
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0 and ||x1—xi0||2 <¢gfl2n=i =1, =12 50 that||x1—xi°||2 <gnz=i=1,j=
1,2. Thus if (N,,), are all r (respectively ST') factors then so is N.

To show (ii) note that if N, ¢ N’ n M is a subfactor then the von Neumann algebra N, c
M generated by N and N, is a factor isomorphic to N ® N,. Hence if N is I then N; isT and
If N is sT" then N, is ST Finally, let us show (iii) in the cask N is a I" subfactor of M. Denote
by a the action Ad u on N and by N, the von Neumann algebra generated by N and u in N;
Thus N; = N X aso that N, is a subfactor of M. Ad u also implement an automorphism
ponN, = N n N®B((x,)n) = (a(xy),),= (ux, u*),. Since N is aTI factor, N, is
completely nonatomic. If the action £ has a nontrivial fixed point in N, then N{ n N” # C
so that N; is aT factor.

If B acts ergodically on N, then there exist unitaries w,, € N,,n = 1, such that
T,(w,) =0,n = 1,and||f(w,) —wyll, < 27", n = 1. Indeed by the Rohlin-type theorem
of A. Connes, for each €¢> 0,n > 1, there exists a partition of the unity
eq,...,e,, in Nysuch that || B(e;) — ejiq1ll, < n7127" 1 n>i> e,,q,= e and such that
all the projections e; have the same trace.

Then w,, = X%_,A%e,, where 1 = exp 2mi/n, satisfies the conditions. Now each
wycan be represented by a sequence of unitaries in N,w,, = (Wpi )k, Such that t(w,) =
0 for all k. Sincew,, € N, = N'n N® and ||f(w,,) —w,]|l, < 27" one can find for each
n > 1an integer ky such that |la(Wn,) = Wak, |, < 277 [[[Wneyi]ll, <27 =) 2

1, where {Y;}; is a dense sequence in N fixed from the beginning. Thus w = (Wn,kn)n is in
N,=N'NnN®Bw) = (“(Wn.kn))n = (Wn,kn)n = w and 1, (W) = 0, contradicting

our assumption on the ergodicity of S.

Note that in (iii) we implicitly show that if NisaT factor then N x Zis also aT
factor. This result, together with the similar one for finite groups (cf.[106]), shows that if G is
a group that can be obtained by countable many extensions of finite or cyclic groups, then
N X G is aT factor whenever G acts freely on the I" factor N. This is the case, for instance,
for solvable discrete groups. It seems to us that a careful use of the techniques in [119] may
yield the general result that if N is a I" factor and if G is an amenable group acting freely on N
then N x G isaT factor (see also [114].

We mention now some relations between maximal injectivity and maximal
hyperfiniteness for subfactors of M.

Lemma (3.2.3)[104]: Let M be a separable type II; factor and R € M a hyperfinite
subfactor,

(i) If R is a maximal injective von Neumann subalgebra of M then R is a maximal hyperfinite
subfactor of M.

(i) If R is a maximal hypeflnite subfactor of M and R" N M = C then R is maximal
injective in M.

Proof: (i) is obvious and (ii) follows from the fact that if R” N M = C then any von
Neumann subalgebra N situated between R and M also satisfiesN° N' N M = C. In
particular N follows a factor.

81



It seems that the following generalization of (ii) holds true: if R ¢ M is a maximal
hyperfinite subfactor,R" N M = Z, and N is the von Neumann algebra generated by R and Z
then N is maximal injective in M. One can easily show this if Z ~ C?2.

Let [F,, be the free group on n generators, 2 < n < oco. Denote by u,v;,v,,..., the
generators of IF,, The elements of [F,,will always be assumed in their reduced form [117].

Let M, be a finite von Neumann algebra with a normal finite faithful trace 7y, 7o(1) =
1. Suppose FF,, acts on M, by t,-preserving automorphisms and denote by M = M, X F,
the corresponding crossed product von Neumann algebra. We identify M, with its canonical
image in M = M, X F, and we denote by A(g),g € F,, the unitaries in M canonically
implementing the action of F,, on M, and by t the unique normal faithful trace on M that
extends the trace 7, of M,,.

Note that {L? (Mo, T9)A(8)}ger, ,» are mutually orthogonal subspaces of L*(M, 1) and

Yger, L* (Mo, 7o)A(g) = L*(M,7). Thus, an element x € L*(M,7) can be uniquely
. 2
decomposed as x = Ygep, agA(g) , With a; € M, |Ix|l5 = ZgEFn”“g”z' The set {g €

Fn|ag # 0} is called the support of x.

Let # = span{M,A(g) |g € [F,.;}. Then # is a weakly dense *-subalgebra in M. We call
the elements of # polynomials inA(g) , g € IF, with coefficients in My.IF x = Y.ocp_bgA(g) €
L*(M,7) and S c F, is a nonempty set, we denote by x, € L>(M,7) the element
Yger, bgA(g) , with by, =a, if g€ S and by =0 if g& S . Hence x, is the orthogonal
projection of x on Y es L* (Mo, To)A(g).

Finally, denote by M, the von Neumann subalgebra of M generated by M, and
A),i.e., M, = My X, L.

Lemma (3.2.4)[104]: Let w be a free ultrqjUter on N. Suppose x is an element in M® that
commutes with A(u). Then for any y;,y, € M with Ey (1) = Eun,(y2) = 0the vectors

i (x — Eyo (%)), (x — Eyo (X)) y2 y1 Eye(x) — Eye(x) y, are mutually orthogonal in

2 2
v (x = Ewg@)|| +]|(x — Ewe@) s .
Proof : Let (x,), be a sequence of elements in M representing x € M®. It is enough to
show the statement in the case when lim ||[x,,, A(uw)]||, = 0.
n—>0o

L2(M®,t,). In particular ||y;x — xy,||5 = |

Let £ > 0. By the Kaplan sky density theorem there exist y?, yY € # such that ||y, —

villz <ellyz =yl <elly?ll < llyall Iy21l < ly2ll, Em, (v2 ) = 0. Let Ny — 1 be the
maximal length of the words g € E, in the supports of y?,y3. Denote by S3 = {g' €
E,lg" contains a nonzero power of some v; and g’ begins with a power of u not larger in
absolute value than 2N, — 1},S3= (S) L, =5, =Stusts,={u* |k € Z},5 =
(Fo\Sn)\So. Note that if x € M then x;, = Ep, (x).

Our first goal is to show that || (x,)s, |, is small for n large. Since || (x)s, |, < ||(xn)53||2 +

||(xn)sg||2 it will be suflicient to control the norms in the right side. Let N, be an integer

multiple of 4N, such that N; > 2°¢72N,,. By the hypothesis, there exists n; = n,(g, N;)
such that if n > ny then [[A(w)x,A(u™) — x|, < 272& for all |k| < Ny. So if 4N, |k| <
N;,and n > n, then we have
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4Nok —4Nyk
||l(u ’ )(Xn)s(}ﬂ(u ’ )_ (xn)u4N0k5¢17u_4N0k |2

= [ Ao ), A MK — ) anory
u Soy~*Norll,
< |[AANoR)x, A(u4Nok) — xn”2 < 272,
Using the parallelogram identity in the Hilbert space L?(M, ) we get the inequalities

Gyl = Q¥R o) g ACu=41e5)|

< 2 [|AQR) () g AN = (o) amor
u 0

2

u—4N0k 2
2

2

—-3.2
5 S 2 & + 2 ||(xn)u4N0kS(17u—4N0k 5
We use the fact that {u*Noksly*Nok}, - are disjoint subsets of IF,, so that summing up the

above inequalities for all k,0 < 4N, |k| < N;, we get
27NG N, [|Ged gl < 27INGENG, 27382 + 2 11, I3

+ 2 ||(Xn) 4Nok 1
u

Sou_4’N0k

so that
IGadgll, < 2732 +4NoNGt < 2722
Similarly we get || (xn)53]| 27 e and thus || Cx,)s, I, < € foralln = n.

Next we show that for any n = 1,y?(X,)s (Xn)sys and y3 (X,)s, — (Xp)s,v5 are
mutually orthogonal vectors in L2(M, 7). To do this we show that they have disjoint supports
inF,,.. So, let g; € F,, be in the support of y? and g, € F,, in the support of y?. Since
O)s, = Em,(y?) = 0,i = 1,2, it follows that g,,g, € S, and thus each of them
contains nonzero powers of some v;s.

Since any element in S begins and ends with a power of u greater in absolute value
than twice the length of g, and g, it follows that g, S N Sg, = ¢,g:s N s,g, = ¢. Thus
the support ofy?(x,,)s is disjoint from the supports of ( (x,,)s ¥5 and(x,)s, y3. Let g5 be

another element in the support of y . We claim that g; S N ¢3S, = @. Indeed, because any
word in the set g; S has a subword that begins and ends with nonzero powers of some v;s

and of length greater than N, + 1, while the subwords of the words in the set g, S, that begin
and end with nonzero powers of some v;s have lengths at most equal to the length of g3, i.e.,

smaller than N,. Thus y?(x,), and y{’(xn)zu have disjoint supports. Similarly we get that
the support of (x,,); y7 is disjoint from the supports of y; (x,,),,, and (x,,),, 3.
Thus, if #, denotes the ultraproduct Hilbert space obtained as the quotient of

{(E)n © L2(M,7) |sup (§), <0} by the subspace { (1n)n < L2(M,7) | lim Iy ]l =
0}, endowed with the norm |[(&)nllz = |lim||€n||2 thenx' = (y2(x,))x" =
n-w

(7P Em, (xn) — En, (x,)y7), are mutually orthogonal elements in £, . Moreover
L>(M®,t,) is naturally embedded in #,, [96], and by the preceding norm estimates we have
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v (%0 = Ew, o)) = Y0 e |

< SUPnsn, |(y1 - y7) (xn - EMn(xn)) ||2 + SuPnan, [|y1 Gends, |,
< sup(llxz |l + Iy 1D
(i) || (x = Eug 09) v2 = x| supnan, || (0 = Ewm, ) v2 = Gds38|

< esubpan, ||(%n = EwyG)) 02 = YD) + supnan, [| )2l

< esup(llxpll + [y D).
(i) [| (1 Emg () = Emgp (0)y2) — x|,

< SUPpan, [|y1Emg () = Eng (0)y2 — (90 (xn)s,, = Cends, ¥2)l,

< SUPpan, |1 = YD) En, O ||, + SUPnzny, [|En, () 2 = ¥,

< 2¢& sup||x,||-
This shows that the vectors 1y, (x — Eyg (w)) ) (x — Eyg (x)) V2Y1Eme (x) —
Eyw(x)y, can be approximated arbitrarrly well in £, by some mutually orthogonal vectors

and hence they are mutually orthogonal in L2(M%,t,, #,,. Since their sum is equal to y;x —
xy, we get

Dys (x = Fwg (0) = ¥, < 5upnan,

ly1x = xylI3 = ||y1 (x - EM{;’(X))HE + ||(x - EM&’(X)) Y2 ”z
H 3 = By 0 = Eug @72l > [ (= Ewp@). |

2

+| (= Bup )2 |
Let IF,, be as in the preceding the free group on n generators, co > n > 2,andfixu € F, to
be one of the generators of F,, Let A be the left regular representation of [F,, and L(F,) =
A(F,)" the type Il, factor associated with it[115]. Denote by A, the von Neumann
subalgebra generated in L([F,,) by the unitary element A(u).
It is known for long time that A,, is a maximal abelian *-subalgebra in L([F,,) (cf. [115], see
also [121]). We shall show that in fact A, is a maximal injective von Neumann subalgebra in
L(TF,).
Lemma(3.2.5)[104]: If B c L(IF,) is a von Neumann subalgebra that contains A4, then
there exists a partition of the unity {e,} ,~oin the center of B such that Be, = A,e, and
Be,is a factor for all n = 1. Moreover for each n > 1the algebra (B’ n AY) e, has a
nonzero atomic part.
Proof: Since A, is maximal abelian in L([F,,) it is maximal abelian in B, hence the center #
of B is contained in A,.Lete, be the maximal projection in the set {p € #lp
projection, Bp = A,p} (e, is possibly zero). Lete = 1 — e, We have to show that fe is an
atomic algebra. Suppose on the contrary that there exists a projection 0 # g € #e such that
#q is completely nonatomic. Denote A = A,(1 — q) + #q,s0 that Ac A, and A is
completely nonatomic. For any element g € F,\{u* |k € Z} we have A(g)AA(g™!) c
A(@)AA(g™)) and A(g)A,A(g™ 1), A, are mutually orthogonal subalgebras in L([F,,) so that
A and y(g) AA(g™1) are mutually orthogonal. By Lemma 2.5 in [121] it follows that A(g) is
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orthogonal (with respect to the trace) to A" n L(FF,). But the Hilbert space generated in
L?>(L(F,),7) by A(g),g € F,\{u*|k € Z} , coincides with the orthogonal of
L*(A,, 1) in L>(L(F,),7).Thus A’ n L(F,) c L?(4,,t) so that A’ n L(F,) c A,. In
particular, since (4’ n L(F,))g = (#' n L(F,)))q D Bg, it follows that Bq < A,,, and this
contradicts the maximality of e,.

Let{e,} ,~1 be the atoms of fe (so thate,+ Y, e, = 1). Since A, < B,B is completely
nonatomic, so that Be,, are factors of type II;,n > 1.

Suppose (B’ N A?) e,, is completely nonatomic for somen = 1land letB; = (B’ N
A®Ye, + A®(1 — e,) . Then B; c A? is also completely nonatomic and since
A, A(g)A2A(g™1) are mutually orthogonal for g € F,\{u*|k € Z} it follows that B, c
A2 and A(g)B;A(g™) c A(g) A,A(g™ 1) are mutually orthogonal subalgebras. Thus A(g)is
orthogonal to B; N L(IF,))® and in particular to Be,, < ((B' N A%?) n L(F,)®)e, = (B{ N
L(F,)®)e, c B; N L(F,)®, for all gF,\{u*|k € Z}. We get Be, c A,, which is a
contradiction.

Theorem (3.2.6)[104]: If B ¢ L(F,) is a von Neumann algebra that contains one of the
generators of F,then B is a direct sum of an abelian algebra and of a ,sequence of non T’
type 11, factors.

Proof: Suppose A(u) € B.By (1) there exist projections {e,;} o In the center of B such
that),,e, = 1,Be, = A,e, and Be,,, is a type 11, factor for eachn > 1. Suppose Be has
the property I for some e € {e, },,=1 . It follows that (B,)' n B® has no atoms [101].
Since (B’ N BY) e has a nonzero atomic part (by the preceding lemma) we obtain that there
exists an element x € (B,)’ N L(FF,,)¥ not contained in BX. Thus[x,A(u)] = 0and [x,w] =
Oforallw € B,.

In particular we can choose w to be a unitary element in B, such that w is orthogonal to
Ay i.e., E, (w) = 0 (for instance take e', e to be projections in A, such thate' + e* =
e and t(e!) = 1(e?) .and let w be a selfadjoint unitary element in the factor Be, with
welw* = e?). By Lemma (3.2.4) we get 0 = |lxw — wx |l = ||(x — Eqo(x)) w ||2 =

| = Eag (x) ||, which is a contradiction.

Corollary (3.2.7) [104]: A, is a maximal injective von Neumann subalgebra in L(TF,,).
Proof: If B c L(IF,) is a von Neumann subalgebra and A, c B, A, # B then by the
preceding theorem there exists a projectione € B’ n A,,e # 0, such that Be is a non T
factor of type II;. By A. Connes’ theorem [96] Be (and thus B) cannot be injective.
Corollary (3.2.8) [104]: Let B c L([F,) be a von Neumann subalgebra and suppose A(w)
normalizes B,i.e., A(u) BA(w)* = B.
(i) If B is injective then B c A,,.
(ii) If B is a factor then B = C or B is a non I" factor of type II;.
Proof: If B is injective and A(u) BA(u)* = B then the von Neumann algebra N generated
by A(u) and B is injective and A(u) € N. By the preceding corollarywegetB ¢ N = A,,.

Now suppose B is a factor. If B is finite dimensional then it is injective and (i) shows
that B = C. If Bis a T type Il, factor then denote by a the automorphism of B implemented
by A(w),i.e.,a(b) = A(u) bA(w)*,b € B. If ais an interior automorphism then let w E B
be a unitary element such that a = Adw = AdA(u)|B. It follows that {w) N B = (A(w)' N
Bc {Aw)]'n L(F,) = Ayand {w*A(w)} n L(F,) o B.Consequently
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w € A, w'A(u) € A,, and if A is the von Neumann algebra generated by w*A(u) then A
Is atomic. \Indeed, because if 0 # f € A is a projection such that Af is completely
nonatomic then by [121], (or arguing as in the preceding Lemma(3.2.5)), we get (Af)'N
L(F,)f = Ay,f Since f € A c B'itfollows that By c (Af)'n L(F,)f = A,f whichisa
contradiction. Thus the algebra A generated by w*A(u) is atomic so that if e is a minimal
projection in A there exists a complex scalar

v, lyl = 1, with w*A(u) e = ye,i.e.,A(u)e = y. But e € AcB’nA,, so that A(u)e =
ywe € Be, hence A, e c Be, and since Be is isomorphic to B (because e € B’and B is a
factor) it follows that Be is a I' factor. Finally, if we take B; = eBe + A,(1 —
e) then A, © B;and B; contradicts the conclusion of Theorem (3.2.6).

If a is a properly outer automorphism of the I' factor B, (iii) it follows that the von
Neumann algebra N generated by B and A(w) is also a T factor and A(u) € N, again in
contradiction with Theorem (3.2.6).

Corollary(3.2.9)[104]:(i) If B is a completely nonatomic finite type I von Neumann algebra
then B can be embedded in L(IF,,) as a maximal injective von Neumann subalgebra.

(if) If B is a completely nonatomic type | von Neumann algebra (not necessary finite) then B
can be embedded in L(F,) ®I, as a maximal injective von Neumann subalgebra (here Iis
the separable infinite dimensional type | factor).

Proof. Both (i) and (ii) are easy consequences of Theorem (3.2.6) and of the fact that by
[121] the algebras A, = {A(u,)}‘,n = 1, are not unitary conjugated in L(F,) (uq,uy,...
are the generators of F, For instance, if B =AY @ M,(4Y) ® M;(4Y) P ..., with A
abelian, nonatomic and M,,(A9) the n by n matrix algebra over A9 , then take a partition of
the unity {e,’f}nzkzl/n21 in L(F,) such that 7(el) =...=1(el) # 0,n = 1, andoneach
projection et consider the algebra Ad v*(4,), where v* are partial isometries in
L(Fo,)vkvS = ek and t)v“vk is a projection in 4,, the same for all k,n >k > 1. If
By = @, Adv¥(A,) and B; denotes the algebra generated in L(F,)by the normaker of ,B,,
then B; =~ B and B, is maximal injective in L(F,)

Theorem (3.2.10)[104]: Let (X, u) be a nonatomic probability measure space and suppose
IF,, acts freely on X by measure preserving automorphisms. Denote by M = L* (X,u) X F,
the group measure algebra associated with this action and by R, = L* (X,u) X, Z the
subalgebra of M corresponding to the action of the generator u € [F,0n the space X. Then M
and R,, are type II; von Neumann algebras and R,, , is a maximal igjective von Neumann
subalgebra of M. Moreover if u acts ergodically on X then M is a factor and R, is a maximal
sI" subfactor of M.

Proof: Denote by A = L™ (X, u), so that M = A x F,,, R, =X, Zsince IF, acts freely on A,
A is a Cartan subalgebra both in M and in R,;, [112].

The fact that M and R,, are of type II, follows by classical results on crossed products
(see [103]).

Suppose there exists an injective von Neumann subalgebra N € M such that R,, # N.

Then A is also a maximal abelian subalgebra in N and in fact [112] it is a Cartan
subalgebra in N. In particular N’ n N € N n M c R;, n M c A so that the center of N
Is contained in the center of R,, which is contained in A.
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Thus N is of type II; (since any type | central projection of N would be a central projection of
type I in Ry).

We first show that N’ n N® < R{ .Suppose on the contrary that ' n N c RY .
As pointed, since N is an injective von Neumann algebra of type II;,, N' n N® is of type II,.
LetA, =(N'NN®)Nn A® = N'n A®and B c N'n N® a maximal abelian *subalgebra
of N"n N¢ that contains A, By Lemma (3.2.1) there exist finite dimensional abelian von
Neumann subalge t,(e) = 2~ "for all the minimal projectionse € A,,n > 1.

We infer that A,, is also orthogonal to A®. Indeed, since A is a Cartan subalgebra in N
it follows A = {w unitary element in N wA“®w* = A®} generates N, so that by Lemma
(3.2.2), Epo 0 Eyrne = EnraneO0Epe = Eyrane = Epe Thus, if x € A,y € A%, then
T (x¥) = To(Enane (x¥)) = 74, (XEyane (1)) = To(XEpe(¥)) =
T (X) T4 (Epe () = 7,(x) 7,(y). Now, since A, is orthogonal to A® and A, c N'n
N® c R?, for any g € F,\{u*|k € Z) the algebra A(g) A,A(g™1) is orthogonal to R®,n >
1. It follows by [106] that A(g) is orthogonal to (N'NN®)' N N® and thus A(g) is
orthogonal to N for all g € F,\{u*|k € Z}. Consequently NA(g) and N are mutually
orthogonal linear subspaces in L2(M, 7), in particular AA( g) and N are mutually orthogonal
(since A c N) so that demn\{uk)k L?(A, 1) A( g) is orthogonal to N.

It follows that N < L?(R,, t), hence N c R, which is a contradiction.

Denote by f the maximal projection in the center of N such that Nf = R,f: Lete = 1 —
f:Since R, # N,e # 0. Take x € (N'n N®)\RY, It follows that ex € (N'n N®)\
R®,so that we may suppose ex = xe = x. If y € N is an arbitrary element such that
Eg,(y) = 0then by Lemma(3.2.4) we get

0 = ||yx — xy”2 = ”Y(x — ERﬁ)(x))thencey (x — ERﬁ)(x)) = 0.

Moreover if yo,y € N and Ep (y) = 0 then y, y(x — Eg (x)) = 0 and yy, (x —
ERu(x)) = Yo —Eg, ) (x — Eg,(x)) + yERu(J’o)(x_ ERu(x)) =0 (since
Er, WEr, o)) = 0 and Er (yo — Er, (%)) = 0) . Let J be the w-closed two-
sided”ideaf of N generated by all y € N,Er (y) = 0and let p be the projection in the

center of N such that ] = Np. Since forall y € N satisfying Er (y) = 0 we have eye =y it
follows thatp < e.If e —p # 0, there exists an elementy, € N,0 # y, = yy,(e —p),
such that Eg (yo,) = 0. Indeed because otherwise N(e —p) = R,(e — p), contradicting
the miximality of f = 1 — e. Buttheny, € J = Np, which is again a contradiction. This
shows that e = p and by the preceding remarks for any y € J we have y(X —y(x — Ege (X))
= 0, in particular e(x — ERQ(X)) = O.Bute(x — ERS(X)) = x — Ere(x), a
contradiction.

Thus R, is maximal injective in M.

If in addition u acts ergodically on A then F,, acts ergodically on A so that both R,, and M are
type II; factors. The proof that R, is a maximal sT’

subfactor of M is exactly the same as the proof of the maximal injectivity of R,, Indeed
because from the injectivity of N we used in the preceding proof only the fact that N’ n N¢
is of type II;.
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Examples (3.2.11)[104]: (i) Let (X,, o) be a probability measure space such that L? (X, 1)
has dimension at least two. For instance, considerX, = {0,1} and, u,({0}) = uo({1}) =
271 If g€ Fy, let (Xo,10)g = (Xo,1o) and denote by (X, u) Mger,, (Xo, o) the product
probability measure space. Let ¢ be the Bernoulli shift action of IF,,, on X so that any g €
F,\(e) acts ergodically on X (in fact strongly mixing). Then R, = L*(X, ) Xy Zis a
hyperlinite subfactor of the type II; factor M = L*(X,u) X, F,, and by Theorem (3.2.10)
R, is a maximal sT" subfactor of M. Moreover by [122] and the Hilbert space lemma in [113]
the action of F,, on (X, ) is strongly ergodic, i.e., it has no nontrivial almost invariant
sequences, so that by [107] M is a non T type II; factor (ii) Let (X,, o), (X,p) =
Hger,, (Xo, Ho)g be as in (i) and (X1, py) = Myez (Xo, Ho)r, Where (Xo, o) = (Xo, Ho). Let
o, be the following action of F,onY; : if w,v,,v,,..., are as usual the generators of F,
then all o, (u)o,(v,) ..., act on Y, as the same Bernoulli shift over the group Z. Consider the
product action o X ag; of F, on X x Y;, Since a(u) and a;(u) are strongly mixing, (¢ X
o,)(w) is ergodic, so that the corresponding group measure algebra M = L*(X X Y, u X
H1,)Xs % o, Fn, is @ typelly, factor and R, = L*(X X Y1, 4 X 1) X5 x ,u) Z is a hyperfinite
subfactor of M. By Theorem (3.2.10) R, is a maximal sT" subfactor of M. Since o X o; has
nontrivial almost invariant sequences (because the action a;is amenable), M is a I' factor and
since R, # M,M is wl' (because if M would be sI' then maximality of R, would be
contradicted). The fact that the I" factor M is wI follows also by [106].

(iii) (Xo, to), (X, ) = lgep_, (Xo, Uo)g b€ as in (i), F,,_ ; the subgroup of IF,, generated by
V1, Uz, AN (Yo, ) == lger, , (Xo, Uo)g:

Consider the action o, of F,,0on Y, as follows : o, (u)acts trivially on Y, and a3, . is
the Bernoulli shift over the group F,,_; Then the action ¢ X o, ofF,on (X X Y,,u X u,) is
free, ergodic, but the action of o X a,(u) is not ergodic, it acts trivially on sets of the form
X X A,A c Y,. Thusinthiscase M = L*(X X Y, 0 X t3) X5 x 5, Fpy is @ type 11, factor and
R, = R @ Aywhere A, is a completely nonatomic abelian von Neumann algebra. By the
same arguments as in (i) and (i) we get that forn = 2,M is a wrI factor (because o, is
amenable) and forn = 3 M is non I" (because in this case g, is strongly ergodic).

(iv) Let x, = {0, 1} with the measure 1y ({0}) = uo({I1}) = 271 and let z,, z,, ..., be a Borel
partition of (Y3, 1) = Mye, (KXo, o) With u(Z) = 275,k =>1 . Then (Zy, pyz,) =
(Y1, 27%u,) . Now let g, be the following action of F,on Y; : a,(u) is trivial on Z; and it is
the Bernoulli shift on Z, k > 2, via the isomorphism(Zy, sz, ) = (Y1, 2781 ) gy, ACHS
on Y; as the Bernoulli shift via the isomorphism (Y, u;) = Tlger , (Xo, o)g Then take the
product action o X gy, 0f F,,onX X Y, Since o and o, are strongly mixing the
corresponding M is a type I1, factor. The subalgebra R,, is isomorphic in this caseto R & 4,
where A, is abelian of the form 4, = A; ® A,with A; completely nonatomic and A, atomic
and infinite dimensional. Again by113] ], [107], if n = 2 then M is wr and if n > 3 then
Misnon T.

Note that by obvious modifications of this example we can choose the action g,such that the
abelian algebra A, (the center of R,) is of any form we like.
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(v) Let FJ be the subgroup of SL(2,z) generated by ((1) i) and ((1) i) so that F9 is

isomorphic to the free group F,.Let T? = R?/Z? be the two-dimensional torus with the
normalized Haar measure u. Let SL(2,Z) act on T? as the group of linear automorphisms and
denote by o'the restriction of this action to F As ¢’is well known to be ergodic, the algebra
M = L®(T? u) X, F,, is a type II, factor. If R, is the von Neumann subalgebra of M

generated by the action of the element u = ((1) i) € ) then R, has diffuse center but it is

maximal injective in M by Theorem (3,2.10). We mention that it is not known whether the
action of F9 on T2 is strongly ergodic, although the global action of SL(2,Z) was showd to
be strongly ergodic in [122].

Let us summarise the conclusions of the preceding examples, using then notations of

Theorem (3.2.10):
Proposition (3.2.12)[104]: Let A, be an arbitrary separable abelian von Neumann algebra.
There exist free ergodic measure preserving actions of [F,,,n = 2, on a nonatomic
probability measure space (X, u) such that R, = R ®A,, and suchthat MisanonTorawTl
factor of type I1;.

Note that Theorem (3.2.10) and Examples (3.2.11) also provide examples of maximal
amenable subequivalence relations of the measured equivalence relation R implemented
on (X, u) by the action of the group F,, .

We mention now a consequence of [92]:

Theorem(3.2.13)[104]: If M is a separable type II, factor then M contains the hyperfinite
factor R as a maximal injective von Neumann subalgebra.

Proof: By [92] there exists a hyperfinite subfactor R, € M such that

RyN M = C. So, if R is a maximal injective von Neumann subalgebra that contains R, then
R'NM c Ryn M = C andthus R is a factor. By [96] R is the hyperfinite type II, factor.

We close with two problems. The first one, if answered in the affirmative, would
considerably enlarge our class of examples. The second one is related to the proof of
Theorem (3.2.10), but also has an independent interest.

Problems(3.2.14)[104]:1f M,, M, are type II; factors and B, ¢ M;,B, < M, are maximal
injective von Neumann algebras, is B; @ B,maximal injective in M; @ M,? Is this true at
least for M, = B, = R?

Let R ; < R be a hyperlinite subfactor such that RN R = Cand R’ n R® c R{ for some
free ultrafilter w on N. Does it follow that R, = R?

Let (X, u) be a nonatomic probability measure space and suppose [F, acts freely on (X, u)by
measure preserving automorphisms. Let u,v be the generators of F, . denote A =
L*(X,u),M = A X Fy,,R, = A X, Z and by A(g),g € F, the unitaries of M
canonically implementing the action of [F, on A. Suppose in addition that both « and v act
ergodically on A and that there exists an automorphism © on M such that ©(A(u)) =
A(v),0(A) = A. For examples of such a situation see Examples (3.2.11), (i) and (ii); so, R,
is hyperfinite and by Theorem (3.2.10) it is a maximal sr subfactor of M.

Denote by N the algebra of 2 by 2 matrices over Mand R = {x @ O(x)|x € R,}  N.

L 0) € M,(M) = N, then Re = R,, Note

Thus R is isomorphic to R, and in fact, if e = (0 0
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that if IF, acts as in Examples (3.2.11), (i) then M and N are non T, if [F, acts as in 2° then M
and N are wr.

Theorem (3.2.15)[104]: With the above notations, R is a maximal sT" subfactor in N. In
particular it is a maximal hyperfinite subfactor in N,butR® N N =Ce + C(1 — e).

Proof: We shall assume on the contrary that there exists an sI" subfactor N, in N such that
R c Ny,R #N, First of all note that N, has elements of the form x =
(ii ;z) with x'? # 0. Indeed, because otherwise e € NN N and so Npe = N,

would be an sT" subfactor of M. By Theorem (3.2.10), R, = Nye and thus R = N, which
contradicts our assumption.
Next we show that R has a central sequence (x,),, with
xil  xl2
n = (x7211 x,zl2>
such that ||x12]||, = § > 0, for allm > 1. We do this in the following two lemmas. In the

third lemma we show that in fact there also exists an element
11 12

y y
y = ( ) € N,,
y21 yzz 0
such that ||y?*x}2|l, = ¢ > 0,n > 1.
Lemma(3.2.16)[104]: eNye & R,,.

Proof: Let x = x* € Nowith x2 # 0. Then the element x(A(u™) @ O(A(u"))) x* =
x(A(u™) @ A(w™)) x* belongs to N, and

XAUMO A (vP))x* = (xllzl* xli) (A(’Sn) /1(2”)) (;1121 xlz)

X X X
_ (x“/l(u")x“ + x12/1(vn)x12 ) *)
* *

If eNye c R, then x'* € R and x ' A(u™) x'* + x2A(v™M)x'? € R,

Since A(u™) € R, we get x22A(v™)x% € R, forall n € Z. Thus

yx2A(w™Mx'? y*isinR, forally € R,n € Z.As A(g)R,A(g™ ") and

A, = {A(v)}''" are mutually orthogonal subalgebras in M for all

g € F,, it follows that A(g)yx'24,x*? y*A(q"") and A, © C are

mutually orthogonal linear subspaces in L?>(M, 1),g € F, So, if

b,,b, € A, then t((b, — t(hy)) A(g)yx*2b;x'¥ y*A(g™) = 0 : or
equivalentz (b, A(g)yx'?b x'2 y"A(g™") = (b)) (A(R)yx"?b1x"* y* A(g™)).

In particular if we take an arbitrary €> 0 and a partition of the unity
€1,65,...,eqpin A suchthat t(e;)) <e, m=>i=>1 then we have
T(A(@)yx%e;x ¥ y*A(g™1)) < e||x2||?|ly]I? so that if A, denotes the algebra generated by
er...,e,We get

[T(A(@yx ™12 < ||Egy o (A()yx™)|

= HZ eA(@yxiZe;
i

2
= ek @yxel
2 i

90



= ) wea(@yxizex' yag™))
i

< el 2IPIyI? ) w(ep) = ellx 2|2yl

l

Thus t(A(g)yx'?) = Oforallg € F,,y € R, and if we take y € A we obtain that x2 is
orthogonal to AA(g) in L2(M, 1) for all g € F, so that x1? is orthogonal to M. This is a
contradiction.
Lemma(3.2.17)[104]: N, has a cent and sequence (x,,),, with ||x1%|, =6 > 0,n > 1.
Proof: If we assume the contrary, then e commutes with N; N N§°. Since N; N N§° is a
type II; von Neumann algebra it follows that (N, N N§°.), is also of type II; Let M; be the
von Neumann algebra generated in M by eNye. Then R,, € M,, M,is a factor (because M; N
M,c Min M c R, n M =C) and by the preceding lemma R, +# M; as M;nN
M{containse(N, N N§’)e it follows that M; N M{° is noncommutative, so that M, is an sT’
factor, contradicting Theorem (3.2.10).
Lemma(3.2.18)[104]: There exists an elementy € N,, and a central sequence (x,), in N,
such that ||y?x}?|l, =c> 0,n > 1.
Proof: By Lemma (3.2.17) there exists a central sequence (y,), such that||y,|| <
1,|1xk2)l, =68 > 0,n > 1. We claim that there existc > 0,n, € N and a subsequence
(va2) ,of (¥a®)n such that ||y7}02*y,},f||2 > ¢ > 0for all k > 1. Denote j, = (¥1?),, € N&
and assume on the contrary that for any k > 1 there exists n;, (with n, > n;_, such that
[ ® xn2||, < 27 for all m = my Thus 5, = (y32), € N¢’ satisfies 733, = 0 in N§* Then
construct y, as a subsequence of ¥, such that y;¥, = 0.y, will also satisfy y;y, = 0.
Recursively we get n + 1 elements $,,¥;,..., 5, in Ng” withiyy;, = 0if i = j, [yl < 1
and |||, = &. This is a contradiction if n > §~1.
End of the proof of Theorem (3.2.15). By Lemma (3.2.18) there exists a sequence (x;;),in N
and ye N such that [|x,]] < 1,n = 1,||[x, A(WBA(V)]|l, = O,]|lx,,yll, = 0 and
ly?1x1?||l, = ¢ > 0,n > 1 It follows that:

|A@F)x it A(uF) — x1111||2 - 0[[A(wF)x22A(v ) — x1212||2 -0

|A(wF)x2tA(u*) — x1211||2 - 0[| AR xL2A(w ) — x}f”2 — 0forallk € Z (1)
ly*2x3% + y*'xz® — x32y?% — 231 y* 2|l = 0. (2)

We shall use from now on. Similar computations as in the proof of Lemma (3.2.4) will show
that the element y?1x12 makes it impossible for (2) to hold. So let £ > 0 by the Kaplansky
density theorem there exist y5 € F (polynomials in [F,with coefficients in A) such that
lyY —ysll. <& llysll < llyYll.Let Ny, — 1 be the maximal length of a word appearing in
the supports of yg§,1 < i,j < 2.Let N; be a multiple of 4N, , such that N, >
3¢72 Ny.Let n; = n,(g&, N;) be such that for n > n, we have:
AR x2 A(uF) — x}ll”2 < g ||AWR)xFA(w ) — x,212||2 < s
|2 @R xr2a(vF) — x,112||2 < g,
AR x21 A(uF) — x,211||2 < efor |k| < N, (3)
lim supy |lygxz? + y5 xn® — x22y5% — %3 ¥pll, < € (4)
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Note that we also have ||yZ1x1?||, = ¢ — e.
Let T} = {g € F, |gbegins with a power of u not larger in absolute value than
2N, — 1}, T4 = {g € F, |gends with a power of v not larger in absolute value than 2N, —

1}, Ty = Tt UT¢ We show first that ||(x,112)7~0||2 < 3¢ . ‘Indeed, we have that
{u*NokT 14Nk}, _  are disjoint sets and for 4N, |k| < Ny, we get

|2k (k2 g AW HNK) = (632 g s

| 2

= H/l(ull-Nok)x%Z/'l(v‘l-Nok) _ xrllZ) 4N0kT1—4N0k
u 0 2

< [Nk x 22 A (v 4Nk — 35,112”2 <e
Using the parallelogram identity and summing up over all |[k| < (4Ny) Ny, k # 0, we get
_ 2
2(4N,) 1N1||(x7112)T01”2

2
=2 Z ||A(u4N0k)(xrllz)Toll(v_WOk) - (xrllz)u‘*NokTolv—wok
f 2

2
D ) yaworg-smor|| < 24NN 2 + 2313
k 2
2 .. 2
so that|| Cep®) || < &2 + &2; similarly|| Cep®)rg || < 2¢ and thus

|Carll, < GaDmll, + [ Cr®rell, < 3e
Let T, = F,\T, and T = U {gT, |g € F,has a length not larger than N, — 1}. Clearly
Vo ixgt = y€1(x1112)T1 + xgl(x’rllZ)To and ygl(xrllz)Tl = (ygl(xrllz)Tl)T» so that
s 2 rllz = ||yg1(x%2)T1”2 - ”J’gl(xrllz)n,”z
> |lygtxa’llz — 2||3’§1(x7112)ro||2 > |lystxn?ll — 6elly?]

In particular we have ||y3'x}?|l; = ¢ — ¢ — 6¢||y?!]|. To get a contradiction from this
inequality and (4) it will be sufficient to show that y32x22, x22y22, x31y3? have small norms
on the set T. This is easy to see for x31y2?, since by the same computation as for y31x12 its
norm is concentratedon T-tand TN T-1 = ¢.

The other two elements in (4) can be treated in the same way, so let us do it for

| (v32x2?);||,. Denote as in Lemma (3.2.4),S,= {v*|k € Z},S, = {g € F,|gbegins and
ends with powers of v greater than 2N, — 1 in modulus}, S, = (F,\S,)\S;- As in the proof
of Lemma (3.2.4), we may suppose that n, is such that ||(x,212)50||235, for all n > n, For any
g € F,, of length not larger than N, — 1, we have gS; N T =¢,g5, N T = ¢. Indeed
because in the first 2N, letters of a word in T there are more u’s than u’s, while a word in g5,
or in gS, is in the opposite situation, and also because any word in T has more than 3N,
letters, with some nonzero power of v at the end. It follows that
||(Y§2x7212)T||2 < “3’32(357212)50”2 < ly*2]l. ||(x,212)50||2.

We have thus obtained that forn > n,,

+ 2
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lye?xa? + y5'xn® — x32y5” — x5 ¥o° 2

2 |27 )r + 6 ) — (e — O vo el

2 |5 Dzl = 16% %) rllz = 10?6 rllz = 1 ye ™) 7l

> ¢ — & — 6elly*H|| — 3elly®?|| — 3elly?*|l — 3elly ™l
So, if £ is small enough this is in contradiction with (4). Hence our initial assumption on the
existence of an sTI" subfactor N, of N such that R € Ny, R # N, lead to a contradiction. It
follows that R is a maximal sT subfactor in N.
Examples (3.2.19)[104]: (i) A maximal hyperfinite subfactor -with noncommutative relative
commutant can be constructed as follows: Let’ ©, R,,, M be as in Theorem (3.2.15) and denote
N = M;(M) the 3 by 3 matrix algebra over M\,R = {x @ x @ O(x)|x € R,}. ThenRis
maximal hyperfiite in N (in fact it is maximal sT)and R"'n N = M,(C) & C.
(i) A more general -example than Theorem (3.2.15), is the following: Let [F, be the free
group with n generators, that we denote by’ u; ,u,,...,u, (.0 > n = 2) and suppose F,
acts freely and ,ergodically by measure preserving transformations on the nonatomic
probability measure space (X, u). As in Theorem (3.2.15), denote A = L (X, u),M = A X
F,, Ry = A X, Zand by A(g),g € I, the unitaries in M canonically implementing the action
of F,onA. Suppose there exists an automorphism © € Aut(M) such that 0(4) =
A,0w) =uyn—1=i=>1 and let N=M,(M),R = {xDO(x)D .. HO" 1(x)|x €

R}

Then R is a maximal hyperiinite subfactor of N (in fact a maximal sI" subfactor) and
RN N =(C".

In both examples (i) and (ii) it follows by Examples (3.2.11) , (i), (ii) that M and N can
be chosen either non T or wr'.

The proofs of Examples (3.2.19), (i) and (ii), aside from some ‘obvious modifications,
follow step by step the proof of Theorem (3.2.15). So we have in conclusion:
Theorem (3.2.20)[104]: (i) For any n > 2 there exist type II; wI" and non I'factors M with
maximal hypeflnite subfactors R such that R' n M =~ C!,
(i) There exist II;wI' and non T factors with maximal hypflnite subfactors having
noncommutative reliitive cornmutant.

The above theorem and Theorem (3.2.13) show that a first invariant to consider for the
classification (up to conjugation by automorphisms) of the maximal hyper- finite subfactors
of a type II, factor M is the type of their relative cornmutant in M.

Corollary (3.2.21)[260]: Let B,, B, be von Neumann subalgebras of M and suppose that
the group u = {w,_, unitary in B,_,w,_[B,+1W;_, = B,41] generates B, then Epr o
EB;nM = EB,an ° EBT+1 = EB;nMZ-

Proof: For x € M, let Ky = co%r—2{uxu*|u unitary in U}. Then K, is a convex weakly
compact subset of M and by the inferior semicontinuity of the application x — t ||x||, it
follows that there exists E(x) € K,, such that ||E(x)||, = inf {||yll, v € K,}. Since || |I,is
a Hilbert norm and K, is convex it follows that E(x)is the unique element in K., with this
property. Moreover, since U,_, is a group, w,_,E(x)w,_, € K, for all w,_, in U,_, and
lw,_.E(x)w;_5|l, = |I[E(x)|l, so that w,_,E(x)w;_, = E(x) . Consequently E(x) €
U,_,NM = B.Nn Mand E is a well-defined function from MtoB, N M. IfxeB. N M
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then clearly K, = {x}sothatE(x) = x.Ifx € M is orthogonal to B, N M (as an element
in L?(M, 1)) then the set K, is orthogonal to B, n M (since w,_,xw,_, is orthogonal to
B/ n M for all unitaries w,_, € U,_, ). This means that E(x) = 0. It follows that E(X) is
the orthogonal projection of x onto B, N M thatis, E(x) = Epr ().

Now, for x € B,,; we get w,_,xw,_, € B,,, forallw,_, € U,_, so that K, € B,,,_1,
and thus Eprp(x) €Bryy . Since we also have Epiny(x) €B. N M we get
Egray(Bry1) ©Bf NBryy . So, if p and g denote the extensions of Egps, and,
respectively, Eg 1o L?>(M, ) then the left suppot of pq is equal to pA g. It follows that
rqg = pAq = qp.

Corollary (3.2.22)[260]: N,_, has a cent and sequence (x;,¢)14e With |[x12.]l, =6 > 0,
€ > 0.

Proof: If we assume the contrary, then e commutes with N,_; n N*,.Since N,_; N N*
is a type II; von Neumann algebra it follows that (N,_; N N*,.), is also of type II; Let M,
be the von Neumann algebra generated in M,._, by eN,._,e. Then R, < M,, M, is a factor
(because M, NM,c MynN M,_, € R, N M._,=C) and by the preceding lemma
Ry _,# M, as M;.nMp contains e(N,_; N Ni2,) e it follows that M;nMg is
noncommutative, so that M,. is an sT factor, contradicting Theorem (3.2.10).
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Chapter 4
Quasi-regular and Induced Representations of the Infinite-Dimensional Nilpotent
Group

We show that construction uses the infinite tensor product of arbitrary Gaussian
measures in the spaces R™ with m > 1 extending in a rather subtle way for the infinite tensor
product of one-dimensional Gaussian measures. It depends on two completions H and G of
the subgroup H and the group G, on an extension S: H — U(V) of the representation S : H
— U(V ) and on a choice of the G-quasi-invariant measure p on an appropriate completion
X = H\G of the space H\G. We consider the “nilpotent” group B% of infinite in both
directions upper triangular matrices and the induced representation corresponding to the so-
called generic orbits.

Section (4.1): Infinite-Dimensional Nilpotent Group

For (X, B) be a measurable space and let Aut(X) denote the group of all measurable
automorphisms of the space X. With any measurable action « :G — Aut(X) of a group* G on
the space X and a G-quasi-invariant measure pgon X one can associate a unitary
representation %*X : G — U(L*(X,uw)), of the group G by the formula (m"** f)(x) =
(du(a-1(x)/duNY2f (a,-1(x)), f € L*(X, ). Let us set a(G) = {a, € Aut(X) |t €
G}. Let a(G)' be the centralizer of the subgroup a(G) in Aut(X): a(G)' = {g €
Aut(X) | {g, @} = ga,g~ta;! = eVt € G}. The following conjecture has been discussed
in [146]-[148].

Conjecture (4.1.1)[123]: The representation T*#X : G - U(L*(X,n)) is irreducible if and
only if :

() ut L uvg € a(G)" \ {e} (where L stands for singular),

(i) the measure u is G-ergodic.

We recall that a measure u is G-ergodic if f (a; (x)) = f (x) Vt € G implies f(x) =
const p a.e. for all functions f € L'(X, n).

We shall show Conjecture (4.1.1) in the case where G is the infinite-dimensional
nilpotent group G = B)) of finite upper-triangular matrices of infinite order with unities on
the diagonal, the space X = X™ being the set of left cosets G,, \ BY, G,, being suitable
subgroups of the group BN of all upper-triangular matrices of infinite order with unities on
the diagonal, and x an infinite tensor product of Gaussian measures on the spaces R™ with
some fixed m > 1.

A more detailed explanation of the concepts used here is given in the following.

Let G be a locally compact group. The right p (respectively left 1) regular
representation of the group G is a particular case of the representation = *#X with the space X
= G, the action a being the right action a« = R (respectively the left action « = L), and the
measure u being the right invariant Haar measure on the group G (see, [131], [139], [140],
[160]).

A quasiregular representation of a locally compact group G is also a particular case of
the representation w®#X (see, for example, [160]) with the space X = H \ G, where H is a
subgroup of the group G, the action «a being the right action of the group G on the space X
and the measure ¢ being some quasi-invariant measure on the space X (this measure is unique

95



up to a scalar multiple). We remark that in [139], [140] this representation has also been
called geometric representation.

We will consider the approach which deals with analogs for infinite dimensional
groups of the regular and quasiregular representations of finite-dimensional groups.

Let G be an infinite-dimensional topological group. To define an analog of the regular
representation, let us consider some topological group G, containing the initial group G as a
dense subgroup, i.e. G = G (G being the closure of G). Suppose we have some quasi-
invariant measure x on X = G with respect to the right action of the group G,i.e.a =

R,R, (x) = xt1. In this case we shall call the representation 7%*G an analog of the
regular representation. We shall denote this representation by T®# and the Conjecture (4.1.1)
Is reduced to the following Ismagilov conjecture.

Conjecture(4.1.2)[123]:(Ismagilov,1985) The right regular representation TRH : G —
U(L%(G,p)) is irreducible if and only if :

pu L pvt e G\{e}

(i) the measure w is G-ergodic.

The work [145] initiated the study of representations of current groups, i.e. groups
C(X,U) of continuous mappings X — U, where X is a finite-dimensional Riemannian
manifold and U is a finite-dimensional Lie group.

The regular representation of infinite-dimensional groups, in the case of current
groups, was studied firstly in [124], [127], [128], [137] (see [129]). An analog of the regular
representation for an arbitrary infinite-dimensional group G, using a G-quasi-invariant
measure on some completion G of such a group, is defined in [141], [143].

For X = S',U a compact or non-compact connected Lie group,Wiener measures on the loop
groups G = C(X,U) were constructed and their quasi-invariance were showd in [124],
[127], [129], [151], [155].

Conjecture (4.1.2) was formulated by R.S. Ismagilov for the group G = B} and the
measure u being the product of arbitrary one-dimensional centered Gaussian measures on the
group G = BN and was showd for this case in [141], [142].

The first result in this direction was showd in [156]. For the complex infinite-dimensional
Borel group Boroc'N and the standard Gaussian measure on its completion BorcN the
irreducibility of the corresponding regular representation was showd there. Here Borc,N 0
(respectively Borc,N) is the group of matrices of the form x = exp t +s where t is a diagonal
matrix with a finite number of nonzero real elements (respectively arbitrary real elements)
and s is a finite (respectively arbitrary) complex strictly upper-triangular matrix.

For the product of arbitrary one-dimensional measures on the group BN Conjecture(4.1.2)
was showd in [144] under some technical assumptions on the measure.

In [143] Conjecture(4.1.2) was showd for the groups of the interval and circle
diffeomorphisms. For the group of the interval diffeomorphisms the Shavgulidze measure
[158] was used, the image of the classical Wiener measure with respect to some bijection. For
the group of circle diffeomorphisms the Malliavin measure [153] was used.

Whether Conjecture(4.1.2) holds in the general case is an open problem.

In [148] it was shown that Conjecture(4.1.1) holds for the inductive limit ¢ =
SLy(2”,R) = lir;llSL(Z"‘l,R),of the special linear groups (simple groups) acting on a
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strip of length m € N in the space of real matrices which are infinite in both directions, the
measure u being a product Gaussian measure.

Let us consider the special case of a G-space, namely the homogeneous space X =
H \ G, where H is a subgroup of the group G and u is some quasi-invariant measure on X (if
it exists) with respect to the right action R of the group G on the homogeneous space H \ G.
In this case we call the corresponding representation w?#H\¢ an analog of the quasiregular or
geometric representation of the group G (see [145]).

In [125] Conjecture (4.1.1)was showd for the solvable infinite-dimensional real Borel
group G = Bor{ acting on G-spaces X™,m € N, where X™ is the set of left cosets
G, \ BorN, and G,, is some subgroups of the group BorNof all upper-triangular matrices of
infinite order with non zero elements on the diagonal. The measure u on X™ is the product of
infinitely many onedimensional Gaussian measures on R.

In [146], [147] Conjecture (4.1.1) was showd for the nilpotent group G = B)' and some
G-spaces X™, m € N, being the set of left cosets Gm\BY, where G,, are some subgroups of
the group BYN. Here the measure u on X™ is the infinite product of arbitrary one-dimensional
Gaussian measures on R. In this case the variables x,,,1 <p <q < m, can be
approximated by linear combinations of the expressions A,,A.n, q <n, where Ay, are
generators of one-parameter groups exp(tEy,), k <n,t € R.

In [126], using results of [144], we extended the results of [145]-[146] to the case of an
infinite tensor product of one-dimensional non-Gaussian (general) measures.

We generalize results of [145]-[147] in another direction. Namely we show
Conjecture(4.1.1) for the same nilpotent infinite-dimensional group G = B) and the same
G-spaces X™, m € N, but with a measure x which is the infinite tensor product of arbitrary
centered Gaussian measures on R™, for any arbitrary fixed m € N. More precisely, the
measure x on X™ ~ R! x R? x---x R™"1x R™ x R™ X--- is the infinite tensor

product of arbitrary
po= u%"=® Hpm) )
n=2

Gaussian centered measures:

where pzm is a Gaussian measure on the space R™™! for2 <n< m and ugzm is a
Gaussian measure on the space R™ forn > m. In this case for the approximation of the
variables x,,,1 <p <q < m, we also use the commutative family of the generators
Ain, 1 < k < m < n, but the corresponding expressions are much more complicated. In fact
the extensions of [145]-[147] to the present case are not at all simple, the above expressions
are no longer polynomials in the generators Ay, they rather involve, next to the generators,

also the one-parameter groups

R.ug' _
exXp(tEy) — exp(tAin),t €ER,

their derivatives and very special suitable chosen combinations that allow to approximate in
an appropriate way the variables involved (see Lemmas (4.1.12)and (4.1.15)

Let us consider the group G = BN of all upper-triangular real matrices of infinite order with
unities on the diagonal
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G - BN :{I +X|x = Z xknEkn})

. 1<k<n
and its subgroup

G = BY =1 +x € BY|xis finite,
where E}, is an infinite-dimensional matrix with 1 at the place k,n € N and zeros
elsewhere,x = (Xyn)k<n 1S finite means that x;,, = 0 for all (k, n) except for a finite
number of indices k, n.
Obviously, BY = li)rEB(n, R) is the inductive limit of the group B(n, R)of real

uppertriangular matrices with units on the principal diagonal

I+ z xkrEkrlxkr € R}

1<k<rsn

with respect to the natural imbedding B(n,R) ¢ B(n + 1,R).For m € N we also define
the subgroups G,,,, respectively G™, of the group BN as follows:

X = z xknEkn}'

m<k<n

B(n,R) =

G =11 +x € BY

G™m ={I+XEBN

X = Z xknEkn}.
1<sksm,k<n
Since BN = G,, - G™ the space X™ of left cosets X™ = G,, \BY is isomorphic to the group
G™. We use the notation G™ = G,,. By construction, the right action R of the group G is well
defined on the space X™. More precisely if we define the decomposition x = x,,, - x™:
BN3xwx, - x™ € G, -G™,
the right action R of the group B)) on the space X™ is defined as follows:
R, (x™) = (x™t™H)™ x™ € G™,t € B).

Define the measure u™ := ug' on the space X™ =~ Gm

X™m ~ R xR? x---x R™1 x R™ x R™ X---
by the formula ug' = ®y-, Uzm , Where g is the Gaussian measure on the space R™ for
n > m (respectively on the space R""! for 2 < n < m) defined by

1 1 -1
= S (n)
e () J(2m)™ detB™ P ( 2 ((B ) ® x) ) dx

,detC(") 1
= Zom exp (— > (C( )x, x)) dx (1)

where B™ are positive-definite operators in the space R™ (or R*™1),x =
(X170 Xoms - - +» X)), dx IS @ Lebesgue measure on R™ and €™ = (BM)~1,
Lemma(4.1.3)[123]: For the measure uz' we have

(ugORe ~ pg', VvVt € By

(with ~ meaning equivalence).
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Proof: The right action R, fort € BJ changes linearly only a finite number of coordinates
of the pointx € X™.
Now we can define the representation associated with the right action
TRHE By > U (L (X™, up)
in the natural wayj, i.e.

(7 £) o) = (dug (R ))/du () F (R (1)) .

Lemma(4.1.4)[123]: The measure ug' on the space X™ is ergodic with respect to the right
action R of the group B on the space X™.
Proof: It is well known that any measurable function on R*® = R X R X- with the standard
Gaussian measure y; = ®p=q K, , Where I, = I (see (i)) which is invariant under any
change of the first coordinates (i.e. with respect to the additive action of the group Rg’ )
coincides almost everywhere with a constant function (see [159]). The proof works also in the
case where we replace R by R™,m > 1, and the standard Gaussian measure u; on R with
any probability measure u,» on R™ equivalent with the Lebesgue measure on R™. To show
this it is sufficient to see that any function f € L*((R™)%,® 51 tzm ) is the limit of uk —
a.e. constant functions f* : f = lim, f¥ ,where u, =Q%_; ppm ,

o= | et and it = Q) .
(R™M)® n=k+1

Therefore the proof follows from the fact that the measure uz' = ®;-, Hgm on the space
X™m =R xR? x---x R™1 x R™ x R™ x--- is the infinite tensor product of Gaussian
measures uzm on the space R™(for n > m), from the fact that the right action R, for t €
BY changes only a finite number of coordinates of the point x € X™, and that the group
G = G™ n BY c X™ acts transitively on itself. In fact it is shown that the measure is
ergodic with respect to the action of the subgroup GI* ¢ BY'.

Theorem (4.1.5)[123]: For the measure ug' the following four statements are equivalent:

(i) the representation TtR’“B is irreducible;

(i) (ugH' L ugvt € B(m,R) \ {e};
(iii) (ui)lexpeera) | pyvt € R\{0}V1<p <q < m;

(iV) Sk, (UB) = X2 g1 b =00Vl <p <q< m,

where B™ = (b™Mym ¢ = (ym _ and c™ = (BM)1,
Proof: The proof of Theorem (4.1.5) is organized as follows:

() = (i) = (i) = (iv) = ).
The parts (i) = (ii) = (iii) are evident. The part (iii) < (iv) follows from
Lemma(4.1.9), which is based on the Kakutani criterion [138].
The idea of the proof of irreducibility, i.e. the part (iv) = (i). Let us denote by U™ the von
Neumann algebra generated by the representation TtR‘“ 5

Ym = (TtR"‘gl|t € G) .
We show that (iv) = [(A™)' < L*(X™ up")] = (i) . Let the inclusion (A™)" c
L*(X™, ugh) holds. Using the ergodicity of the measure uz' Lemma (4.1.9) this shows the
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irreducibility. Indeed in this case an operator A € (™)’ should be the operator of
multiplication (since (A™)" < L*(X™,up")) by some essentially bounded function a €

L*(X™, ug)). The commutation relation [A4, TR”B] = 0Vt € B implies a(R;! (x)) =
a(x) (mod u") vt € BY , so by ergodicity of the measure uf* with respect to the right
action of the group B on the space X™ we conclude that A = a = const (mod ul). This
then shows the irreducibility in Theorem(4.1.5), i.e. the part [(A™)" < L*(X™, ug")] = (i).
The proof of the remaining part, i.e. the implication (iv) = [(A™)" < L*(X™,ug)] is
based on the fact that the operators of multiplication by independent variables x,4,1 < p <
m,p < q, may be approximated in the strong resolvent sense by some functions of the
generators

d m
R,m _ RII'LB
Akn = E [+tEgp, 0 ,k,n € N,k <n,

i.e. that the operators x,, are affiliated with the von-Neumann algebra 4™. See Lemma
(4.1.15) and Lemma (4.1.16) .
Definition (4.1.6)[123]: Recall (cf., e.g., [132]) that a non-necessarily bounded self-adjoint
operator A in a Hilbert space H is said to be affiliated with a von Neumann algebra M of
operators in this Hilbert space H,if exp(itA) € M forallt € R. One then writes AnM.
Since the algebra (exp(itxpq) |t € R,1 < p < m,p <q)" is the maximal abelian
subalgebra in the von Neumann algebra B(H) of all bounded operator in the Hilbert space
H = L*(X™,ug') we conclude that (exp(itxyy)|t € R1 <p<mp <q)'=
L*(X™ ug' ). The inclusion (exp(itx,;),1 < p< m,p <q) c U™ implies (A™)' c
LOO (er Up )
To finish the proof of Theorem(4.1.5) it remains to show the implication

(V) = (xpqn¥™1 < p <mp <q) & exp(itxy,) € A 1< p < mp < q
It is sufficient to show that X,, > CS,,,, for some C >0, where

Y s Y Yo,

1<p<gsm 1srspsqs<m pq
and the series S5, (u™) and Y},,(m) are defined in Lemmas (4.1.9) and (4.1.13) ). This is
done in Appendices A-C.
We define the generalization of the characteristic polynomial for matrix C and establish
some its properties. These properties are used then in Appendices B and C. For a matrix
C € Mat(k,C) we set

Go(1) = detCy (1), where Co(1) = C +z,1 E.od = (Ap...,A) € CE.

Lemma (4.1.7)[123]: Lemma (4.1.22) For a posmve definite matrix C € Mat(k,C),A €

Rk with A, > 0,7 = 1,...,k, we have
2 SA 5,
oAy Gi(A)

12...1

where G;(1) = M12 l (Cc(M))and1<p<I< k.
The proof of Lemma ('4.'1.7) Is based on the following inequality (see Lemma (4.1.21).)
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Lemma (4.1.8)[123]: (Hadamard—Ficher’s inequality [135], [136], see also [150]) Let C €
Mat(m, R) be a positive definite matrixand @ € a,f < {1,...,m}. Then

detCa detcom[)’ . M(C() M(C( N ,8)
detCaUB detCﬁ N M(ax U ) M(B)
where C, for ¢ = {a,...,a, } denotes the matrix which entries lie on the intersection of
ag,...,as rows and a4, ..., ag columns of the matrix C and M(a) = MZ (C) = detC, are
corresponding minors of the matrix C.
The “best” approximation of x,,, by the generators A’,\f;l” Is based on the exact computation of
the matrix elements

p
Qp(t) = (TtR,”B 1, 1) t=1+ Z trErn, (tr)g?:l € R?,

of the representation TRES and their generalization (see Appendix B, Lemma (4.1.23) , and
on the finding the appropriate combinations of operator functions of the generators Ai;:" to
approximate the operators of multiplication by x,,,,.

Finally the proof of the inequality X,, > CS,,, is based on Lemmas (4.1.7), (4.1.8)
and(4.1.25) dealing with some inequalities involving the generalized characteristic
polynomials. Lemma(4.1.25) is showd.

Lemma (4 1.9)[123]: For the measure uz* we have the equivalence of

(i) (M) ew(Epa) 1 Myt € R\{0}V1 <p <q < mand

Gl () = g W) oy ppAge™)

(i0Spq (U5) = Xn=q+1Cpp baqg = Ln=q+1~ o cmy = P V1I=Pp <q=m,

where B® = (b)) _ ., c™ = (¢ )®._, and C™ = (BM)~1

Proof: The proof is based on the Kakutani criterion [138] and on the exact formula for the
Hellinger integral

=0,

d,udv

for two Gaussian measure u = uB; andv = yBZ (see [149]):

-1/4 -1/4
H(uBy, uB, ) = detB, detB, _ [ detC; detC, @
l’l' 1Hu 2 - detz Bl -;BZ - d€t2 C1 '5 C2 )

where C; = (B;)71,i = 1,2.
Let us consider the one-parameter subgroup exp(tE,,;) = I + tE,; € B(m,R),1< p <
g < m,t € R. Using (1) we have for the positive definite operator B = B™ in R™:

L detC
d,uBHtqu (x) = ’(27‘[)7"

detC .
(2m)™ exp ——(exp(t pa) ,Cexp(tqu)x, x) dx = d‘quq(t) (x)

1
exp (=3 (€ exp By, ex0(p)2) | d exp(tE)
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where  (Bpq(t))™" = Cp,(t) = exp(tE,y)* C exp(tE,,) (we note that detC =
detC,,(t)). Hence, using (2) we get

1/4 1/2
[+tE detC,, (t)detc detC
Hu (Ly " uB) = . ®O+c| Cpa (D) + C (3)
det? P41~~~ > det? 24~~~ >
We shall show that
Coqe(t) +C t2
t qu = detC + ZCPPAZ(C)’ (4)

where AZ (0),1 < p,q < m,denote the cofactors of the matrix C corresponding to the row p
and the column g. We have

detC detC 4 “pPEAT
hence
1/2
detC (1+ e )
= —C
= ; +C 4 pr~qq
det L

2
and finally, using (3) we get

0

oo -1/2
L t2
by ) = [ | g™ e = [ (14 Gepny)

n=q+1 n=q+1

B — z bﬁ?) E., and C™ := (B("))_1 = z C;?) Ers

1<7r,ssm 1<r,s<m

So using the properties of the Hellinger integral for two Gaussian measures we conclude that

o +2 -1/2
(M?)LHtqu Luptvt e R\ {0} © x 1_[ (1 + ZC;;?I’)SZ?) =0
n=q+1
<= S}%q(#?) = .
To show (4) we set Cp,q(t) = exp(tE,q)*C exp(tEy,). We have form € Nand1 <p <

where

q < musing the identity exp(tE,,) = I +tE,,t € R,
Cll eee Clp ©tT Clq + tClp e Clm
C,o(t) = C1p Cop -+ Cpg T lCyp Cpm
pq Cig Htcy 0 Cpgtitepp oo Cgq +2tChy Ft2Chy v Com F tCom
Cim e Cpm e Cqm T tCqm e Crnm
hence
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cpq(t)+c

det L —
Cor aon t
C C e C + EC o Cym
B 1p e pp pq T 3%pp p
- t
t t
t een Cgqq + 2tc,, +—c
Ciqg T tC1p Cpq T 5Cpp aq pa T 5 Cpp Cqm * 5Cpm
C11 Clp Clq Clm
C . C
1 ‘e pp C Ca pm
p rq £2
= .2 = detC + ZcppAg(C).
Cig " Cpa gty Cam
Cim .. Cpm Cqm oo Cmm

This ends the proof of Lemma(4.1.9) , and thus also of (iii) & (iv).
Approximation of the variables x,,
We first show Lemmas (4.1.12) and(4.1.15) , which give a suitable approximation of x,,

only onthe vector f = 1 € L*(X™, ul})
We shall also use the well-known result (see, for example, [130])

n n n 1 -1
min(zakx,i Zxk = 1>=<Z—) ,a, > 0,k = 1,2,...,n.
x€ERM = ay

k=1 k=1
We use the same result in a slightly different form with b, # 0,k = 1,2,...,n,

min (i QX i xpby = 1) = <i b—i) (5)

k=1 k=1

b (b2
xk == (z —k>
205 e 0%
For any subset I < N let us denote as before by (f,, | n € I) the closure of the linear space
generated by the set of vectors (f,, | n € I) in a Hilbert space H.
We note that the distance d(f,,+1; {fi,.--, f)) of the vector f,,,,in H from the hyperplane
(fi,.--,fn) may be calculated in terms of the Gram determinants I" (f1,f2, ..., fx)

corresponding to the set of vectors fi, f5, ..., fi (see [133]):
I'(fi, far--0 fn+1)

fn+1+kzltkfk = TS (©)

where the Gram determinant is  defined by I'(fi,foro0 fn) =

dety (fi, for- - fn)and y (fi, for -+, fn) =: ¥n IS the Gram matrix
(fof) (ufa) - (fuf) \
)

(fZJfl) (f2'f2 (erfn
(fn»fl) (fn»fz) (fnrfn)
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t=(tg )ER™
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Lemma  (4110)[123]We  have  d(furs; {fir i) = G2 = (rsn furd) =

(Vn ' dntr,dnsn), Where dnyy = ((F farn), (P fura)s -0 (fu farn)) € R™
Proof: We may write

n 2 n n
D tife ~funa| = D tibm Giofid = 2D Gl fars) + Gnons )
k=1 km=1 k=1

= (Wnt,t) — 2(t, dpy1) + s fre1)s
wheret = (ty,t,,...,t,) € R™ Using (58) for 4,, = y,, we get
(Vntl t) - Z(t, dn+1) = (Vn(t - tO)' (t - to)) - (Vn_l dn+1r dn+1);
where t, = y,, ! d,. Hence we get (see (6))
n

far1 — Z tifr

k=1
= (fn+1ffn+1)(yn_1 dn+1fdn+1) + min (Vn(t - tO) (t - to))

t=(ty )ER™
= (fa+1 fne1) (Vn_l A1 Apyr)-
Remark (4.1.11)[123]: In fact a more general result holds. Let us denote by A, the real

non-necessarily symmetric matrix in R™*! and by A, its n x n block after crossing the
element in the last column and row, by v,,1 = (A1n+1 QGnstr o Anna ) Ansr =
(An+11 Aps12s - App1n) VECIOIS v, 41, hypr € R™ If detA,, # 0 then we have

B detA, 1
Ap+in+1 — (Anl Vn+1 An1) = —detlel . (7)
n

t=(7;tr;ti)TéR" (Ynt, t) - Z(t, dn+1) + (fn+1r fn+1)

min
t=(ty )ER™

Proof: It is sufficient to use the identity (Schur—Frobenius decomposition)

A, = ( Ap Vpi1 ) _ (An 0)( Ida A7 vrt1+1> _
wr Rny1r Quitnta 0 1 \Apy1  Gpyinsr
The generators

i Rug
dt I+tEgky =0

of the one-parameter groups I + tE;, have the following form (on smooth functions of
compact support):

. gRM _
Akn T Akn -

k-1 m
App = ZxrkDrn + Dy, 1 < k< mk < n, Apn = zxrkDrn'm < k<n,
r=1 r=1
where
5} 1 My~ 1
D = 5= E(x, (B™) E,m),l <k <n (8)

To simplify the further computations let us consider the corresponding Fourier transforms F,,
in the variables x;,,, 1 < k <m,m <n,
m ¢ L2(X™, ug) = L*(X™, uf
We have
EnDinEnt = iyin for (k,n),1 <k < m,m < n,and E,1 = 1.
Let us set pc =Q®p, pem with €™ = BM™W for 2 <n<m and ™ =
(B! forn >m.
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We define the Fourier transform E,, as the infinite tensor product F,,, =Q®n-n+1 Fnn Where
Fun ¢+ L2(R™, pigm) = L*(R™, o)
is the image of the standard Fourier transform E,, in the space L?(R™,dx),i.e.E,, =
U(C™)=1Fmy(BM), where
1,2 m Fmn 2 m
U(B™) = (dﬂsém(x))ZL ( e )R e )U(C(n)) (d#c;m(x))l/ ’

X L2(R™ dx) " L2(R™ dx) x

Since the standard Fourier transform F,, is defined as follows:

1
0 = T | ew it of Gdx,
and, for D = B(™ respectively D = ¢(™ -
duD (x)\ /2 1 1
u(b) =( dx ) ~ (2n)™ detD/%) exp(_Z(D 1x'x)>'

we have finally for F,,,:

Funf ) = (U(C™) " FRU(B™)F) (3)

1 1 -1 1
= (@m™ detcmyiz P (Z((C( ) vy )>\/(—zn)m

1 _
| e it 0f Cdx (o deen ™) exp(~5 B0 x,x) d

Rm
1
_exp(z ((C™) 71y, p)) _ | P
-~ Jemmdetc™ HJn P (l(y'x) -3 (™) x'x)>f(x)dx'

Using Fourier transform E,, we obtain for A,,, = F, Ak, (F,) ™t

k-1
A, = l(Z X, Ky +ykn) ,1 < k<m<n,

r=1

m
Aﬂ;c/n = zDrk(y)yrn ym< k <n, 9)
r=1

where

1 -
Din(y) = dyx - E(x:(c(n)) 1Ekn) < _k <n.
n

, 1
Letussetfors = (sy,...,S,) E Rrand1<r <p <qg <m

' T
&P(s) = E, D, exp (2 SlAln> 1 = iy,, exp (2 5121;> 1. (10)

For a function f : X™ — C we set
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Mf = [ f odug.

To approximate the variables x,;, 1 <p <q < m, we use

Lemma(4.1.12)[123]:Let 1< r < p < q <m. For any s® = (s ..,

and forany a™ = (a!™,...,a%’) € R™,n €N, we have

r m
Xpq € (exp (Z ) Am) (z () Akn> 1ln € Nym <n) & X, (s,a,m) = o,

=1 k=1
wheres = (s> ..,a = (a™)2_ .1, aé") = 1and

qu (s,a,m)
(0 ]

sr(n)) € R,

_y IMET (s™)]? .
© Mg s + || (Agn = XpgDpn + s senp @ Ao 1|

n=m+1C
pp
Before proving Lemma(4.1.12) let us make some comments about the procedure for arriving

at the expressions used for the approximation of the variables x,, on the left-hand side of the

equivale.
Proof: If we put ¥, t,M& P (s™) = 1 we get
2

B T m
‘ Z t, exp (Z l(n) Am) (Z () Akn) — qu] 1

|l n =1 k=1
2

r
lz t, exp zgl(n) Am> Agn — XpqDpn + XpgDpn + z )Akn — Xpq |1
n

=1 k=1,k+q

T
= Z tn [%pq (Dpnexp (Z sl(n) Am) — M&F (s(n))>

n =1

-
+ exp (2 () Am) Aq qu on T Z (n) Axn

k=1,k+#q

S & el ( p( e Am)—m;p <s<n>>)
n

2

+exp< )Aln> Agn — XpgDpn + z )Akn
= k=1k#q
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2
= > & lxpall” (e = M2 ™)

n

T

+ +exp<z ()Am> Agn — XpgDpn + Z )Akn

=1 k=1,k=q

where we have used the equality ||§ — M&||2 = ||€]|? — |Mé&|?:

T
Dy, exp (2 sl(n) Am) — M.f;ps(n)] 1

=1

cyy = [MEP (s™)["
Remark(4.1.13)[123]. The operator A, = Zr;i XrqDrn + Dgn cONtains x,q for r = p.b.
Since MD,,1 = 0and MD,, exp(sA,,)1 # 0 we may first think of considering
exp(sApn)Aml,1 <p < q <m (similarly as in [146], [147] where the linear
combinations of A,,A,, were used). But this is not sufficient for the approximation. We

might then try to consider the expression
m

exp(sApn) (z Okakn) (1 <p <m<n,

k=1
with a, = 1. The calculations show again that these combinations are still not sufficient to

approximate x,, . We arrive then at the suggestion to take

T m
exp(ZslAm> (ZakAkn> (1< 1r <p <qg<m<n,

=1 k=1
which is the choice made in Lemma (4.1.12).

c. For approximation of the variable x,, we use p different combinations, corresponding to
20q (s,a,m),1 < r < p. All these combinations are essential, i.e. none of them can be
omitted. This can be seen by constructing corresponding counterexamples and is in a contrast
to the previous cases considered in [146], [147] where only one combination of A,, A, were
used to approximate xpq.

d. To make the expression 27, (s, a,m) in (11) larger (to apply then the criterium in Lemma
(4.1.12) we chose s™ € R” such that

IMEP(s™)|* = max|MERP (s)|”

SER”
(which is possible, |M&,” (s)|2being continuous and bounded).

e. With the same aim we chose a( "™ in such a way that

i = 1o - [M&:7 (™)
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Agn — XpgDpn + Z MW |1

k=1,k+q
2
m
= (tk”fjrelﬁg,n 1A quDpn + Z tkAkn
k=1,k+q

f. The right-hand side of the previous expression is equal (see (6)) to
r (81'82'---;85 »""gm)
r (81; 82,4, gq—l' gq—l: ey gm) ’

Where
gk = gin = A1, 1 <k <Smk # q,85:= ggn = (Agn — XpqDpn) 1. (12)

Definition (4.1.14)[123]: We shall say that two series), a, and)., b,, bn with positive
members are equivalent and shall denote this by, a, ~ Y, b,if they are convergent or
divergent simultaneously. We note that if a,, > 0,b,, > 0,n € N, then we have

a, an,
— ~ —. 13
z a, + b, b, (13)

neN neN
Using (5) we get, setting b = (ME,P (s™M))m+1+N e RN N € N,
2

m+1+N m
: n) (m) _
Zrezw [ z t, exp (Z Am> (Z Akn> — qu] 1| |(t,b) = —
n=m+1 k=1
m+1+N -1

[ME? (s™)|"

n=m+1 Cpp |Mfrp( (n))| + ”( an ~ XpqDpn + Lk 1,k#p ;(cn) Akn)1||
Due to we shall write C (respectively ) instead of C(™ (respectively €™ ), where

~

n) n)
C11 g) o COim
(n) (n)
cm =| ¢12 SS) . Com
w W
( ) Clm C2m n:lm ( )
n n
c, ¢ o
e = |y PP com
(n) O I )
Cim Com  *+- Ci1" T Cpp o+ Cum

Using this remark, notation (13) and Fourier transforms we conclude that
F(gl,gg,...,gm) = det C,i.e.T (81 8om»---»8mn) = det CTV, (14)
since (g84,8p) = (C)pq,l < pq <m . Indeed for p# q we have (g4n, 8pn) =

(gpnlgqn) = (Zr 1 XrpYrn +ypn'25 1xsqysn +yqn) = (ypn'yqn) = C;SZ):
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p-1 2 p-1 P

2 2 ~
Bane8on) = || XrpYrn + :anmn Il + ypnll” = D e = (E®),,
r=1 r—1
(we reinserted here the upper index n in cpq for clarity).

In the following we shall need a variant of Lemma (4 1.9 replacing the |ME? (s)]| by its
maximum Z,? . Let us set (see (10) for definition of &,” (s))

En = max IM&T ()12 (15)
Now we see that using s and « as in parts 4 and 5 of we have

qu (s,a,m)
max_|M&" (s™)|?

_ z sMeRrr
n | (n)

max |M'>;rp (S(n))lz + (Aqn _quDpn +Zk 1,k+p k Akn )1”

194 (n) ER"
max_|M&” ()|

sMeRr
(13)~
(n)

n C(n) T ||(Aqn XpqDpn + L= Lkep @ Akn )1”2

~
Cl

(1s)) - =
™ (n) +F(81n;

82ns-- gq—ln: gq+1n gmn)
Remark (4.1.13) Z EPT(81,82 - 8q-1Bqs1s -~ Bm)
CopT (81,82 8q-1,8qs1s - 8m) + T(81,82,--+, 8gp wv0) Bim)

r m) ::zfr’”F(gl,gz,-- 1 8q-1,8q+1s -~ Bm) (14)2 EPALC™
Cppr(gligZJ- »gm) detC(")
For the latter equality we have used the fact that
Copl (81,82 8q-18q+1r--8m) + T 81,82+, 8q »++»8m

= I (81,82---,8m), )
which follows from (25). Indeed it is sufficient to take in (25) C = C — ¢, Eqq and A,

Cpp- Then we have
I' (81,82,---,8m) = detC = det(C —cppEqy, + cpquq)
= det(C -cppEqq) + CppAZ (C-cppEqq)

=T (81»gz»---»g2 yoor8m) + Cppl (81,82,-++,8g-1,8q+1, -+ +» Bm)-
So we have show d the following lemma.

Lemma(4.1.15)[123]: Let1 < r<p < q < m. Then for somes; = (s )ppsr @ =
(a(") ) S wheres(n)%") WeR1< 1 <r1 <k< m wehave

T m
Xpq € (exp (2 () Aln)> (z (n) Akn> 1ln € N,m <n)

=1 k=1
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EPALICM

& Zpe(m) = zm = oo, (16)

n
The proof of (iv) = (xpq A™,1 < p < m,p < q) in Theorem (4.1.5)
Idea.We show firstly that x,,, 4™ Am for some (p,q): 1 <p <gq < m if conditions (iv)
are valid. Further we show that this also holds for all such (p, g). For this it is sufficient to
show that

Xy > CS,, for some C >0, (a7)
where

S, = Z SpaW™),and 2y, = Z Zr.(m) (18)
1sp<qsm 1srsp<qsm
(see (15) for the definition of X}, (m)). Indeed, in this case S,, = cosince Sy, (u™) =
oVp,q:1 <p <q < mby Lemma(4.1.9)hence X,, = ooby (17) and finally we conclude
that 27,(m) = oo for some r,p,q: 1 <r <p <q < m. By Lemma (4.1.15) we get that
Xpg N U™,
We define the generalization of the characteristic polynomial for matrix C €
Mat(m, C) and establish some its properties. These properties are used.
We estimate 589 = max |IMEP (s™)|2. This estimation is based on Lemma (4.1.23)
which gives us the exact formula for
MEPI(t) = (anTeiZfzle cn b 1),t= (tyty....t;) ER,1 < p<m
(see (43)), where Dy, is defined in (8). The latter formula is based of the exact formulas for
the matrix elements
0,(t) == 057 () = (Te’;’;‘fﬁzl . 1),t= (t)0; €ERP,1 < p<m
(see (37)) and theirs generalizations (see (41)). We cannot calculate explicitly

oPqd rq 2
En' = max |[M&" (6)]

but we are able by Lemmas (4.1.23) and (4.1.24) to obtain the estimation 5’7 > wP?

(M2 271 () ))2 exp(—1)

(277 (7)) (7 (657) + Shea e (677
(see (45) and (46)). The crucial for proving (17) is Lemma (4.1.25) dealing with some

inequalities involving the generalized characteristic polynomials. We use the notations of
Lemma(4.1.9) :

00 00 n) ,m) () 0 n)
SL ('um) _ C(n) b(n) _ Cpp Aqq (Cm ) _ Cpp ACICI (Cm)
B) = E = E = E
P PP At detCﬁf) detcy,

bq ,_
prd .=

n=q+1 n=q+1 n=q+1

Let
k-1

A=), eERMA =UA ), =14, =01, =) ¢,2< k<m, (19

g

r=1
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fq = e Z qup,z < qu, fZ == elllll = C11»

1<r<p<q
fi = e(W! + w12 4 w22) (20)
C11 C12 e Clm
. C12 C11 +C2 .- Com
Cm - .
Clm CZm Cll + + Cmm
C11 C12 e Cim
C12 C22 e C2m
Crp = (21)
Cim Com o Cm

Obviously, we have C,, = C,,(1),where A € C™, is defined in (19)and we use the notation

Cm(A) = G + Yiz1 kB
We have the following expressions for S,, and %,,:

~ Y, (Tkz zcrr)A Cn) _ N Ziahed ()
Z Sric(u™) ~ Z det C,, det C,,

1sr<ksm n=m+1 n=m+1
We have replaced the series

oo

() ()
Spq(up') = z Cop Daq

n=q+1
with the equivalent one

0

SkauE)~ Y el b

. . n=m+1
If we use the equality C,, = C,,(4), we get
~pq Aq C(n)

Zm = Z Zpq(m) = Z Z Zpa (M) = Z Z z detC(n)

1<srsp<qsm 2sqsm 1srsp<q 2sqsm 1srsp<q n

=z a=2 (Z 1srsp<q “rp) ( (A) (47)qu 2(21<r5p<q ”UTP)AZ (Cm(’i))

~ detCp, (1) detCp (1)
(20) iz foAq(Ca(D)
z detCp, + Zm AqAq(Cn(Alal)) (2)

The implications S,,, =0 = X,, = |s based on the equality (see (22))

m-—k

A% (Ca(A1)) = A(C) + > D iy A, AL (Cn) (23)

r=1<k<il<i,<---<iy<m
and on the following lemma.
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Lemma (4.1.16)[123]:1f SE. (ul*) = o for some 1 < k < n < m then one of the series
g (M), 1<r<p < q<m, is divergent and hence by Lemma(4.1.25) we can

approximate the corresponding variable x4

Further we can approximate the remaining variables x;,,,1 < k< m < n, asin[146]. This

implies the inclusion (A™)" < L*(X™, ug") and so the irreducibility of the representation

(see “The idea of the proof of irreducibility” at the beginning).

We define G,, (1) the generalization of the characteristic polynomial p.(t) = det(tl —

C),t € C, of the matrix C € Mat(m, C):

G,(1) = detC,(1),1 € C™ where C,,(1) = C +Z/1kEkk. (24)

We denote by M,’ffll‘Z ‘r(C) (respectively A% 21 iz lr(C) 1<i; <---<i, <£ml<

J1<--<J < m, the minors (respectively the cofactors) of the matrix C with
iy,i5, ..., L rows and ji, j, ..., j» columns. By definition
Am (€) = MR(C) = Land M7 (C) = M{(C) = detC.
Lemma (4.1.17)[123]: For the generalized characteristic polynomial G,,(1) of C €
Mat(m,C) and A = (14, 4,,...,4,;,) € C™ we have:
m

G (1) = det(C +z,1k5kk)

k=1

= detC + 2 Z/lil/llz Ay, AR 0y (25)
r=1<k<il<i<-<i<m
Obviously G,,,(A) is a polynomial in the variables
Lemma (4.1.18)[123]:For C € Mat(m,C) and A € C™ we have
m

Gr(A) = AX(Cn(D) = detCp(A) = detCyp + z 247 (Ca(21)), (26)

ALCn (D) = AL+ ) 245 (Cu(A1)), 27)

r=1,r#¥k
Gr(A) = AX(Cn(D) = detCrm(A)detCp, +z,1 47 (Ca (A7) (28)
AL(C(A) = AEC) + z A A3 (Cn (A1), 29)

r=1,r#k
whereforA € C,, and 1 < k < m we have set

/1["] = (0,...,0,Ak+1,..., 1), A = (1, 2,,...,24,0,...,0). (30)
Proof. We have for m = 2 using (25)
Gy(A) = detCy + 1, A1(Cy) + 2,45(C,) + 1,2,A15(Cy)
= detC, + M[A1(C)) + A,415(C)] + 2,45(Cy)
= detC, + 1A (C,(A12)) + 2,43 (C,(A129)),

112



G,(A) = detC, + 1,A1(C;) + A,[A5(C;) + 4,475(Cy)]
= detC, +1,A (C,(AM)) + 1,43 (C,(2®)).
For m =3 we have
G3(D) = detCy + 1 A1(C3) + 2,45(C3) + A343(C3) + 114,A15(C3) + A443A13(C3)
+ 2,43453(C3) + /11121314%%%((:3)
= detC, + A1[A1(C3) + A,415(C3) + A3415(C3) + 2,434153(C5)]
+ 2,[A5(C3) + 13433(C3)] + A343(C3)
= detC; + A A% (C3(A124)) + 2,43 (C (A1251) ) + 2343 (C5(A1291)),
G3(1) = detC; + L AY(C3) + A,[A43(C3) + 1, AL5(C3)]
+ A3[41(G3) + 4, A15(C3) + /121453((:3) + 114,A153(C3)]
= detC; + 1A} (C5(AM)) + 2, (A3C;(AP)) + 2,43 (€5 (A))
For m > 3 the proof of (26) and (28) is the same. The identity (27) follows from (26) and
(29) follows from (28).
The proof of Lemma (4.1.16) is based on Lemmas (4.1.19), (4.1.21) and (4.1.22) concerning
the properties of a positive matrices.
Lemma (4.1.19)[123]: (Sylvester [159]) Let C € Mat(n,R)and 1 < p < n.We consider a
matrix B = (bik)p,, defined by by = My;7h (C). Then the following Sylvester
determinant identity holds:
detB = [Mi2-2 ()] """ detC.
Corollary (4.1.20)[123]:If p = n — 2 we have in particular
An(C)  AR-1(O) | _ ynmin e ax
Arrll_l (C) Al;l:%(C) - An—ln(C)AN(C)
For arbitrary 1 < p < g < nwe have
AP(C) AP (C AP(C) APY(c
g( ) 3( ) A(CAI(C)or i( ) p(;1( )
AY(©)  AY(O) AY©)  AYO)
Lemma (4.1.21)[123]: (Hadamard—Ficher’s inequality [135], [136], see also [150]) For any
positive definite matrix C € Mat(m, R), m € N, and any two subsets a« and f withe € «,
B < {1,...,m} the following inequality holds:
M)  M(a U B)| _ ‘ A@  A@up)
M@ np) M(P) A@u B AP

where M(a) = M3 (C),A(a) = AZ(C)anda = {1,...,m}\ a.
More precisely, see [135]; [136]. See also [150].
Let us set as before (see (31)) forA = (A,...,4;) € C¥and C e Mat(k, C)

= Ay (OAR(©. (3D

A(ﬁ)‘ <0, (32)

Gr() = detCy(A), where C,(1) = C +z;1 E,, .

In the following lemma we use the notation for A = (44,... Ak) e ck:
/1][[ == (/11,...,/11_1,0,/11_}_1,...,/1](),1 < lS k,
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and GI(1) = M2t (C,(),1 <1 <k. Fora and §such that @ €« S {1,2,...,

pcp c{l +1,...,k},withl < k,C € Mat (k, C) we set

A= A% (C),and G,(D)E: = z A AZE(C).
Pca{1,2,.,1}
By definition we have

G = AR G = (AG) | = G,

Lemma (4.1.22)[123]:We havefor1 <p < I < kand C € Mat(k ()

G(A)  G(PH + 2,6,y
G~ GAPYELE 1+ 2, G (PHPETE
For the positive definite matrix Cand 2 = (A,...,4;,) € RfwithA,. > 0,7 = 1,...,
have
, 0 G Ge(APhy G . (rh
(Gl(ﬂ)) — = lp[\PL+1..k Ip[y1+1..k = 0.
02y Gi(A) |G (APD)1 7k G (PP ITx
Proof: Wehavefor1<p <l < k
k
G (1) d p P
_ _ )\ = Ipl
aﬂp aﬂp d€t<C +Zl/1rErr) AP (C()L )) Gk(/l )p,SO
r=
Gk — G (A7) = G(D)z,=0 = Gi (A7),
hence

Ge(D) = G (APD) + Aka(/l]p[)g,l <p<k

Similarly, we have
G,(A) = G(AP)) + )ch;l(,ﬂp[) (Al ) = G (APL), 7+ Gy

1+1.. k
( ]p[)ZHl wlsSPS L

Finally we get (34). Using the following formula:
(a +bx>' _ bc —ad
c +dx) (¢ +dx)?

we conclude that (34) implies the identity in (34).
To show the inequality in (34) we get
Ge(APDhY g (Ph

G (PO} 317 Ge@PH

AL(C) Agps(©)

anpf
aUB

au[)’(c) A'B(C)
where ¢ = C,(APD),a = {p}andp = {I +1,1 +2,...,k}.

Ay (Ck(/l]p[)) Ag(ck(/ﬂp[))
l+1 k
ARG D) Ak (D)

= 0,

[} and

(33)

(34)

k, we

(35)

(36)

Calculation of the matrix elements @, (¢) fort € Rp their generalizations and 7.
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Let us recall (see (10) and (19)) that 4, = ¥¥-1¢,,,2 < r < m,A; = 0 and
2
9= max||MET || 1 < p<q<m (37

tERP
To estimate

2 _ pq

max||M&R? (0|, = max]|¢?

where &8 () = iy, exp(Xr_ t- Ay ) We shall find the exact formulas for the matrix
elements

R,
@ (t) o go(n) (t) exZ&:r 1tr Ernl, 1) - (tr )113:1 € Rp' 1< p < m, (38)

of the restriction of the representation TR “5 on the commutative subgroup
exp(XP_,t, Erm ) [t € RP) = RP of the group By and theirs generalization defined below.

We note that
p p
exp Z trE | =1 + Z t-Ery.
r=1 r=1

Forl < p <q,p,q € Nweget
p p r—1
PU(t) = iygn exp Ztr Ay | = iygmexpi 2 (2 Xirykn + ym) (39)

r=1

we have used the expression 4,,, = Y52l xp,ykn + Y = Xho1 Xk Vien (se€ (9)). We have

p T
TR’MTBZI = P t A~ _ . ¢
exP(Z1zf)=1 trErn ) = exp r=1 rfm | = €xXpl r XkrYkn

r=1 k=1

p p
= expl ztr Zxkr Ykn
k=1 r=k

To obtain £PP(t) we generalize the function
=RUE
exp (Zle trErn )
in the following way. We replace in the latter identity the vectors (t,,...,t.) €
RP~*+1 by (t,4)r, € RP7¥*1 and denote the result by &, (t): 8i

t11
L1ty
fpp(t) = fpp t31 tazy ... = expl Z Xerbrk + tere | Yien| (40)
k+1
tpl th - t r=

To obtain £P9(t) we consider the functlon $pq(t taq) = &p(t) exp(itqqyqn). We have
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b1ty
$pa(ts tag) = &pp t31

t32
tpz tpp tpp
= expi z Xier trie T tie | YR + g0V qyn |-
r=k+1
Finally we have
9 t d t;t
PP (1) = s;pp( ) and &P4(t) = M )
tpp tqq tqq=0.tkr=tk 1srs<ks<p

tgr=tk ,1sr<k<p
Let us define @,(t) = [ &,,(O)du(x,y), Bpq(t) = [ &pq(O)dulx,y) , where u(x,y) =
UL() @ (B, 41 uct(yy @Nd gy (%) is the standard Gaussian measure in R x R? x - x
R™,

Using definition (36) and the previous equalities we have finally

2
00,x(t)
te PP It ,.=t; 1sr<ks<p
2
00, x(t
P4 — max p—() (41)
teRP | 0ty

trr=0,tg ,1sr<k<p
Our aim is to estimate 9. We shall use the notation Cy := Cyy,_ x; for Mat(m,C) and 1 <

k < m (see notation C, for ¢ € a < {1,...,m}in Lemma (4.1.8)).
Lemma (4.1.23)[123]:For1 < p < g < mand gpq(t) = [ &,q(t)du(x,y) we have

tig e
Lz
Dq \t31 t3p 33

B expi Z Xir tric | Yk + tgqdyn | du(x, ¥)
(P-1)(P-2) 1)(P 2) rek+1
R 2
—_— - — 1
m xp( [(CT, T) = (C1(D) ™4, d)]) (42)
where we set T = (t1q, t22, t33,.., tpp; qq) € Rp+1 C EMat(p +1, C) is defined by
C12 C22 C23 cee C2p Czq
= = = | |€ c c . C c
C:= Cpq = Caz.paq = 13 =23 %33 3p (3¢
\ Clp Czp C3p Cpp Cpq /
C1q C2q C3q " Cpq Cgql

(P-1)(P-2)

d - d21(t ),d31(t )l""dpl(t); dgz(t ),d42(t),,dp2(t), . dpp—l(t) ER 2 )
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dys (t) = trsesz()t),l <s <r <p,e(t) = (CT )

= Z Csktkk + CrrX tkkrl <s< P,
k=1
the operator

-1 — 2
Ci(t) = 1+ C(t) € Mat((p )2(p ),«:)
being defined by

D()~*C,()D()!

-2
(Cll +t21 Cll C12 ClZ Clp—l \
C11 . C11 + tpl C12 C12 . Clp—l
c —2... 22 C2p-1
= 12 €12 C22 t 32 P (43)

2

C12 Tt C12 Cao Coo + tpz C2p—1

- = PR e _2

Ca Com_ C 1 _1-|-t _1/

Where D(tZ = diag(t21, ey tpl; t32, ey thpZ; t4_3, ey tp3p3,' ven tpp—l)' We have
14

p
detCy(t) = 1+ Z zaflafz...aerl.";;';-_-;i";(cp) - z (2. (44)

T=11Si1<i22<---<irsp s=k+1
Lemma (4.1.24)[123]:For1 < p < g <mwe have
P4 > wrq, (45)
where
wra — (My; 3714 (Cpq))* exp(-1) (46)
(My3 1 (CpIMyy D (Cp)+Ih_, A(AL (Cp))?
List of formulas for ¥P4 for small pand p < q.
11 _ 1q _ Cigexp(-1)
Y = o exp(=1),¥ 1 = S 1=<gq, (47)
11
22 _ (M) exp(-1) y2q _ (Mig)? exp(-1)
lp o C11(M%22+ Clzl) ’ o C11(M]1_22+ 0121) ) S ql (48)
w3a — (M133)? exp(-1) 3 <q, (49)

MIZM{23+c11 (M]3 )% + (c11 +C22) (M1 )2’
1234
lpzl_q _ (M123q )2 exp(_l) (50)
MIZEMIZ3%+c11(M123)2 +(c11 + C22) (M123 )2 + (11 +C22 +C33)(M125 )2,

Proof of Lemmas (4.1.23) and (4.1.24). For a positive definite operator C in the space Rm we
have the well-known formulas:

1 1
1,/(2m) an exp (—E(Cx,x)) dx = N (51)

Using formula (50) we obtain the following formula ford € R™:
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1 1 1 (C7d,d)
jexp (—E(Cx,x)+ (d,x)) dx = mexp > , (52)

Jeom

and as a particular case for m =1 we have
L RJ exp (—lcx2 + dx) dx = L exp <d—2> (53)
V2r 2 Ve 2¢
To obtain (52) from (51) we use the following formula:
(Cx,x) —2(d,x) = C(x — x¢),(x —X¢)(c-144) Wherex, = C7'd.  (54)

Indeed we find x, € R™ and d, € R such that
(Cx,x) — 2(d,x) = (C(x —x0),(x —xp)) +d.

We have
(Cx,x) — 2(d,x) = (C(x —x),(x —xp)) +d,
= (Cx,x) —2(Cxy,x) + (Cxg,x0) + dy,
s0 Cxq = d hence x, = C~1d and since (Cxy,x,) +d, = 0 we conclude that d, =

—(Cxg,x9) = —(CC71d,C*d) = —(C~1d, d).
Fourier transform for the Gaussian measure uC in the space R™ is:

1 1
exp i(y,x)du-(x) = ex (——C, ), € R™,
\/WRL p iy, x)duc(x) p Z(yy)y
Let p = 1. Using (51)—(53) we have
1
D1 (t11) =j exp(it1y1n)du(y) = exp (_§C11t121)i

R

D1q (t115 tgq) zj

R
= ex —lc t2, + 2¢y4 ti1tyg + Coatla );
p 5 f1itia 1q t11lqq aqlqq |’

. . 0014 (t11; tgq)
ME (t) = [ iygn explituyan)duty) = L1
aq

2exp i(t11Y1n + tgqVqn)du(y)

tqq=0

R
1
= —Cqq t 11€Xp (__C121t121> , | MEHT (t11)|2 = C12q t{1 exp(—ci1tfy);

cfq exp(-1) _ wiq

Fl9 = max|M&W (¢, )|? =
t11€R| &1 (t11)] o

we have used the obvious result max
1 1
I;leaﬂé(f x)=f (a) = a,wheref (x) =x exp(—ax),a > 0.

This shows (45) for (p, q) = (1, q).
To show (42) in the general case we note that

(55)
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p p
z Z Xkr trk + tkk Ykn + tqq)’qn = (a(x) +T;Y)Rp+1;

k=1 \r=k+1
where
y = (ylnlyZn»'--»ypn; an)'T = (t11't22w--'tpp; tqq) € Rp;11
a() = (@ (), @), 6,(); 0) € R, au(x) = > it = (D
r=k+1
X = z XprEr t = Z terEvr 1 < k < p.

. o 1<k<rsm 1<r<ksm
Using the definition of the Fourier transform we have

p p
qu (t; tqq) = f J exp i lz Z xky trg | Yin + LqgqYqn du(x,y)
k=1 \r=k

Rp+1

1
= f expi((x)+T,y)du(x,y) = Jexp [—E(Ca(x) +T),a(x) + T)] dul (x).

Since
(Cla(x)+T),a(x)+ T) = (Ca(x),a(x)) + 2(a(x),CT) + (CT,T),
we have
1 1
Dpq (t ; tqq) = exp [— > (cTt,T )] f exp (— > [(Ca(x), a(x))
+2(a00,cD)] ) diy (). (56)
To calculate the latter integral we use (52). Let us introduce the notation
-1 (P-2)

X = (X12; X13,X23; 1, xlp,...,' xp_lp) ER 2 .
We show that

(Ca(x),a(x)) + 2(a(x),CT) = (C(OX, X) + 2(d(8), X)
for some

P-D(P-2) _ _

dt) € R = and C(t) € Mar (2=22=2 R).

We have
p p 14
(@(),CT) = Y a@)(CT ) =)' D T tei®) = D L e
k=1 k=1r=k+1 1<k<r<p
= ) Hudu(®) = (Kd(®),
1<k<r<p

where

p-1D(P-2)

a(t) = (drk(t))lsk<rSp ER )
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1%
d (D) = toeer(t) and ep(t) = (CT )y =chr b + Cig bl < k<p — 1.

r=1
Further
p p
(Ca(x),a(x))= z Cknak(x)an(x): Z Ckn z Xierbrk z Xns Lsn
1<kn<p 1<kns<p r=k+1 s=n+1

= z 2 CrnlritsnXerXns = (C(t)X'X):

1<k<r<p 1sn<ss<p
where the operator C(t) is defined by its entries:

(C())krms = Ckntritsn for1 <k <r<pand1 < n<s< p. (57)
This show the representation (43) for the operator C; (t). Finally we have
(Ca(x),a(x)) = (C(t)X,X)and (a(x),CT) = (X,d(t)).
Putting the latter equalities in (56) we get using (52)

1 1
Bpa(t; tag) = exp [—E(CT,T)] j exp (—E[(C(t)X,X) 4 2(X,d(t))])d,u, )

1 1
= NG exp (—E[(CT, T) — (Cl(t)‘ld(t),d(t))]>,

where C;(t) = I + C(t). This shows (44) of Lemma (4.1.23).
We estimate now =P, For (p, q) = (2, 2) we get

1 1
0.(t) = ———exp (=5 [(CT,T) = (G:(O7d(), d())])
2(0) = Tmmsenp (3 [T T) — (G (070, d®)
! 1 Ciatiy + Cratyy)?t2
= —exp (—5101115121 +2¢15t11typ + Coptdy — Gl 111 — 22) 21]);
\/1 + C11t21 + C11t21

where
T = (t11,t32),d(t) = dp(t) = ty161(t) = ty1(C11t11 + C12t22),
e, (t) =CC11t%1 + C12t22;6912(t) = C1l11 T Caatyy,
11 C12
C =G =( ) ,C(t) (=)C11t221'C1(t) = 1+ ¢1t3y,

Ci12 C22 ,
(c11t11 + Crataz)Ci1ts
= |—(Ccq11t11 + Cqot +
[ (c11t11 12t22) 1 +C11t221

(=77, T) ~ (GO, de))

JdetC, ()

(Cr1t11 + Ciataz)Ciatsy
= |—(cy t;1 + Coot +
! (C21t11 22t22) 1 +c,,0%,

(=3[, T) ~ (O™ d(®), d@))

JdetC, (o)

Let el(t) - C11t11 + C12t22 - O SO t11 ES _C12t22/C11' In thlS case
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C122 C122 M1122
(CT,T) = ci1tiy + 2¢1at11toy + oty = <_ —2—+ C22> t3, = ——t3,,

C11 C11 11

2 12

C12€C12 C11C22 — €1 My
Ci2t11 + oty = — ( + sz) lyy = = :

) C11 C11 C11

Finally
. . . 00, ()|’
IME22(t)|? = |Miy,, exp(ityy + ity (X12Yin + Y2 )I? = T
22

e;(t)=0,tz1=t3;

2
M112 2
— | —C11 | 32|
C11

1 +x< expx,x € R. (58)
Hence if we denote t = (t;4,t,,) € R?we have using (41)

(Mi3 )? exp(—1)

M12 2 M2
(C_12 tzz) exp (C_12 tzzz) M2
=14 1 > t7, exp
We have used the inequality

522 — inlM 22 t 2 (IL{ZZ e ]
{rell}grzll U ¢ (Mi5 + cfy)
This shows (45) for (p, q) = (2, 2). For (2, q), 2<q, we have

D4 (t11

t21 tzz; tqq) exp i[tllyln + (t21x12y1n + tzzYZn) + tqqun] d,u(x, y)

R1+3

——————exXp — E(C11t121 + cppt, + qutéq + 2¢15t11t5;

(c11t11 + Ciatay + Cqq tqq)2t221

+2C1q tlltqq + 2C2q tzthq - 1 +C11t221

1 1
= e e (51T )~ GO, A,

where

T = (t11,t22; tgq) € R3,d(t) = ty1(c1at1y + Ciatyy + C1q tqq) =: tz161(t) ER,
e1(t) = ci1ty1 + Ciatyy + C1q tqq;ez(t) = Cp1ty1 + Caplap + Coq g

€11 C12 Ciq
C = Cz’q = <C12 C22 CZCI) ,Cl(t) = detCl(t) = 1+C11t221,

Ciq C2q Cqq

00,4 (t; tgq)
Jt

(c11t11 + Ciatay + €14 tgq)Cig t5:1
1+ C11t§1)

1
JdetC, (D)’

= !(—(clq ti1 + Coq taz + Caqtaq) +
1
X exp (—E [(CT,T)— (C,(t)"'d, d)])
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0D,q (t; tgq)
dt

(C1at11 + Ciztan )Cig t5y
1+ ci1t3)

= [(_(Clq t11 T+ Czq 22 ) +

1 tqq=0

X exp (—%(CT,T))

detCy taq=0

Let t,, = 0. We chose d(t) = 0 so we have ¢y1t;; + ciptp; = Oandty; = — &2tz | this

C11

case
2
M2
(CT,T) = ciitfs + 2¢intistyy + Caats, = (Cﬁ Yo + sz) ts, = 0112 t32,

C11 C11
_ C116q — C120qq _ M
t Cyq ) ta2 = t22 —_tzz
C11 C11

C12C1q

Cigt11 + Coq lyp = (_ p
11
Finally, if we denote t = (t11,t22) € R?, we have

004 (¢ ty)|”
dtyq

|M&29 (1)|* = Miyg, explity; + ity (X12Y 10 + Va2 = |
tqq=0,e1(£)=0

M11§ )2 M2
—lpp ] exp— (i t122> 12 2
<C11 C11 (62) Mig . exp (- M 2. V2 )
1+ ¢ t2, > \¢y 22 €1, h) %2
By (55) we conclude using (41) that

2
52 = maXIMEZq ®I* = max 9024 (' tqq) > > (Mig)" expCD) = y24q
t,-€R dtqq tqq=0.e1(t)=0 c11(Mi5+c%)
This shows (45) for (p,q) = (2,9),2 < q.
For n =3 we have
11 1 1
D3| tyr  ty = —F/—/—=€xp (_E [(CT,T) - (C1(t)_1d, d)]);

t31 t32 t33 Vdetly (1)

T = (ty1,t22,t33),d(t) = (da1(t),d3,(t),d3,()),
dy1(t) = tyre(t),d31(t) = tzrer(t),dsa(t) = tizex(t),
e (t) = ciityy + Ciatyy + Cistzz, ex(t) = Cartyy + oty + Co3tss,

t11 €12 C13 (61) c11t5 C11l21t31  C12ta1l3;
C =0 = ,C() 3

where

t12 C22 (23 Ci1tz1lz1 C11t3y  Ciatzilzz |

iz C23 C33 Ciztaitsy  Ciatzilsy  Caotdy
hence

1+ cigtsy  Citartzn Ciataits;

Ci(t) =1+ C(t) =| catartsy  1+ciatd;  Crataits

Ciatartsy  Ciatzrtzy 14 cpatd,
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2
t11 + 1 C11 C12

= diag(tz1, t31, t32) t11 Critst C12 ydiag(tzy, ts, t3z).
o bl Ciz  Cpp + i3
We show the following inequality for an operator C of order n such that | +C >0:
det(I +C) < exptrC. (59)

Indeed by Hadamard inequality (see [130] or [137]) we have for positive operator C of order

n
n

detC < l_lcii .

i=1
Using the Hadamard mequallty and (58) we have for an operator C such that | +C >0

det(I +C) < 1—[(1 + cu)( )nexp Cii = exp (Z cii) = exp(trC),

i=1 i=1
where we denote by trC the trace of an operator C in the space C,,. Using (59) and (57) we
conclude that

p-1 p—-1
det(I + C(t)) < trC(t) = exp Z Crre ( z t2)| = exp Z ceeas |, (60)
r=k+1 k=1

where a = YP_, . t2 since by (57) we have

-1

p
trC(t) = Z CO)krpr = Z Crklie = ) Ckk z th. (61)

p
1<k<r=<p 1<k<r=<p k=1 r=k+1
Using (25) we get
detC,(t) = t3,t2,t2,(detB + L, AL + 1A% + A3A3 + 1, 1,A15 + A, A5A18 + A,23A4%3

123
+ A1 A,434133
C11 €11 C12 1 1\ (c11  Cop
= thtiht[[cn 1 Oz +<T+T>| |
t t Ci2 C22
€12 €12 C22 21 731

+ ! + < ! + L > + - ]
2 42 “22 2 42 2 +2 11 2 12 42
ty1l31 tr1lzy U3tz ty1t31t32
= 1 4¢3 (t5; + t5)) + cats, + M{Z(t5; + t5)t5,.
Finally we have

detCi(t) = 1 + ¢y a? + cppa? + Mi2a?a3,  where af = t2, + t3,,a% = t3,.
For general n we have by analogy (it shows thus (44))
n—1 n
iqiy..0
detC,(t) = 1+ z alaf ...al M;' 77 (Cy), where aj; = Z t2,.
r=1_15i1<i,<-<ipsn—1 s=k+1

For n =3 we have
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005(t) [ 10(CT,T)
Otzz | 2 0tss

s a(C(t)71d(t), d(t))] exp(—%[(CT,T) — (.7 d®), d)D
Ot33 JdetC, (D) ’

00, (t)
s <—63(t)

) a(Cl(t)‘ld(t),d(t))) exp(—3[(CT,T) = (C(&)1d(8), d(®)])
Ots3 JJdetCy(t)

We calculate |0@5(t)/0t33|? under the conditions e; (t) = e,(t) = 0 on the variablest =
(t11,ta0, t33) € R3. It gives us

{C11t11 + Ciptyy + Ci3tzz = 0,

C21ti1 + Coptyy + Costzz = 0.

detC; (t).

The solutions are

oo MEC), MG o MEG), A o
TUOMBEC) Y M€ T T MB(G) Y ARG Y
In general, for the matrix C, conditions e;(t) = e,(t) =---=e,_1(t) = 0 gives us the

system

Ci1tyy +Ciptop +- - - +Ciptyy = 0,
Ca1tyn + Coaty +- - +Coptyy = 0, (63)

_ Cn-11t11 t Cno12taz ++ - +Choqnton = 0
and the following solutions:

t =(—1)k+nMllzz-'.'.'z’f-'%z’f’i{f;z”‘l (G, _Ar(G)
kk

t _ - 7
Miz iGN ARG
If we denote e, (t) = X7, Cir t,r We Qget

t1<k<n-1 (64)

n

10(CT,T)
(CT,T) = z Ckr trr Lk = Z ex(t )tkk»ET = en(t). (65)
1<k,rsn k=1 nn
Under conditions (63) we have
n
Ay (Cy) Miz 7 (C) A(C () ~1d(D),d(t))
en(t) = Z Cnr An(Cn) thn = Mliinri1 2 thns - Y =0 (66)
r=1 n\-n 12...n—1( n) nn
and
n
65 MlZn(C )
€T, TN eyt = en()tnn =7 B thn.  (67)
= M3y 721 (Cr)

For n =3 using (66) and (67) we can calculate
Miz3(C Miz3(C d(C,(t)~td(t),d(t
o) = MECD | cp gy 2 MEG) 5 2GOOI0)
M5 (C3) M;i5(C3) t33
If, in addition, e; (t) = e,(t) = 0, we have (see (62))
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C _ 2 2 2 _ M123(C5)\ 2 1 2
trC(t) = cy1(t3, +t33) + Caat3z = [C1g MI2(Cy) + + ¢33) | t33.

For n =3 we have if el(t) = e,(t) = 0, using the values for t,,,es;(t) and (CT, T)

005(0)|* _ e3(1) exp(=(CT,T)) (64)
3t JetC.(0) > e2(t) exp(—(CT,T) — trC(t))
123(6') 123 ) A4123(C')
e (2513%5(63) ’ M33(Cs) M3(Cy)\’
éri?é(M%%(@) 55 exp l_té’ (M%%((:g) et )+ on (M%%(cg)> )]
( 11223 3)) exp(—l)
M2(Cy)

CMIZ(C) (Mg(cg))z
—L2 22+ (11 FCa0) + i (o2
Miz(c,) T Tt ey

M%%acg))z _
_ (M%%(C@ exp( 1) — 33
- M{Z(C3)MIF3 (Ca)+c11(MiF (C3))? +(ca1 + €22) (M{F(C3))?
Finally we have (see (41))
- 9
733 = max|M<f33(t)|2 x| 93| > @33,
33€R Otss 1, 1()=e,(t)=0

This shows (45) for (p, q) = (3, 3).
By analogy we have for general n:

08,(t) _ ( 10(CT,T)
dt,, \ 2 0ty

exp(—%[(CT;T) — (C(O)7'd(@®), d®)D

JdetC,(0)

+ a(Cl(t)_ld(t):d(t))atnn>

00,(0) [_e -~ O(Cl(t)‘ld(t),d(t))] exp(~5[(CT,T) — (C,(H)7d(®), d(D)])
Otnn - " Oty JdetC;(t) .

Whent,, = t.,.,n=>r = k = 2, we have by (61)

trC(t) = z Crtre = nz_:lqck( zn: tﬁk) = nz_:lckk( i trzr)-

1<k<rsn k=1 r=k+1 k=1 r=k+1 .
When, in addition el(t) =-.-=e,_41(t) = 0 weget (see (59) and definition (20) of Ay)
n k-1 2
P AR(C)
tTC(t) - z Crr Z tkk - z Z Crr tkk - z Aktkk z 112 - trzm-
An(Cy)
r=1 k=r+1 k=2r=
Finally for general n we have if e;(t) = - -=en — 1(t)
30, (8)|° _ en(t) exp(— (CT T)) (64) 2

eq(t) exp(—(CT ,T) — trC(t))

ot detCy(t) >
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2 A
_ < M%%:::Jl(%)) 2 o —e2 (M%%:.-zz(cn) s ’,:=zak(Ank(cn>)2>

MiZai(C)) ™ Mz (C) (A5 (C))?
Using (55) we get

Mi3-7 (C) )
o (43) 99,0 . <M1122::.ﬁ_11<6n) -
= tn€R | Otpp e1(t)=-=en_1(t)=0 M11227711(Cn) 713:2 Ak(AZ(Cn))Z
Mz =1 () (An(Co))?
_ (M3Z2(C,)2exp(—1) g
M35 =1 (CIMi37 (Ch) + Xiop A(Ank(Cy))?
Finally for general (n,q),n < q, we have if e, (t) =---=e,_1(t) = 0,ty4 = 0,
00,(0)|* _ eZ(t) exp(—=(CT,T)) (64) ,
atnn detCl(t) > eq (t) exp( (C , ) tTC(t))

where C = C,, 4, and T are defined in Lemma (4.1.21). Moreover, the above conditions gives
us thesame solutions (64) as before, hence using the decomposition of the minor
MiZnZiq (Coq) we have

n n
An C' M12...Tl_—17'l C t
€q (t) = (Cn,qT)q = Zcqr t,, = Z T( Tl) (1 — 12.n-1q ( n,q) nn.

C —
L TARC) A7 (Co)
Finally we getif e, (t) = --=e,_4(t) = Oandt,; = 0
0Bng (t; te)|?
Enq > q qq > 2 _ _
tr;}lae)ﬂ% 3ty > tr,{:l%)n(zz eq (t) exp— (CT,T ) —trC(t)

tgq=0

tnnER

— 2 a
. <M1122::If_115‘ Cnq )) & exp 2 <M C) z‘:zak(Az(cn))Z)
Mizani(C) ) ™ TA\Mizas (G (A7 (Cn))?
_ 2
_ (Mllzzrrll—llcrzl Cn,q )) exp(_l) _
M2t (Co M2 (Co ) + Sop A (A3 (Co))?

Lemma (4.1.25)[123]: ForA = (A, )™, € R™ A, = 0,4, =Yk 1c,,,2 < k <m, we

have

pna,

= fell(CnD) = Aedl (Cu(AM)) 2 0,2< k<m. (68)
Let us suppose that Lemma(4.1.25) holds. Using (13), (23)—(68) we have
Zm(ZZ)Z et Z]n=2 quAg(Cm(i)? (24) e ! Z]n=2 qug(Cm(i))A
> LudetCy + X! AL (Cr(Algl)) = — detCpn, + XgL, f AL (Cn (D))

q=2 q
(13) T fAL(Crn(D) 2 ™, A AL (Cr(Alg))
~ detC,, > detC,,
n
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(23) ZZZLZ AqAg(Cr) g
> detC,, ST
Finally we have X, > S,, . "
Proof: Firstly, we show by induction the inequalities I} > 0 for k > 2. Secondly, we show
that inequality I > 0 and imply the inequality IX¥, > 0 form > k where (see (68)):
1= fielk(Cn(D) = Ledl (Cu(A¥)) 20,25 k< m.

We shall show also that I2, = 0. In the case m =2 we have

I; = [45(C;(D) — 145 (62(2[125])) =0
since f, = A, = cy4 by (19), (20) and (47), and

A%(Cz(i)) = A%CZ(ZDZS]) = A5(C) = ¢y,
where

~. (C11 C12 A €11 C12
Cz(D) (C12 €11+ sz) 'CZ(A[lZS]) = (2= (C12 sz)

In the case m = 3 we show the following inequalities:

13 = f,A3(Cs(D) — 4,43 (G5 (A1) 2 o, (69)
1= fA3(C(D) — 1,43 (C5(A026)) > 0. (70)
Since (see (21))
A C11 C12 C13 A €11 C12 C13
C;(A) = (012 C11 + C22 C23 ) ,C3(A125]) = (C12 C22 C23 ) ,
C13 C23 €11 T €2z + C33 C13 €3 €11 +Cp +C33

and C5(A12¢1) = C; we have by (25)

A3(C(D) = A3 (C5(A120)) = A3(Cy) + A:AB(C5), 43 (C(A12°)) = A3(Cy).
The latter equalities give us 12 = 0. This shows (69). Indeed we have
13 = 1,(45(C3) + 13453(C3)) — 25 (A3(C3) + A5 433(C5)) = 0.
Since f, = A, = c;; and 1; = 0 we have 43(C,,(1)) = A3(C,,(A1*?31)) hence

13 = f,A3(Cu(D) — A, A3C, (A1) = 0,25 m. (72)
We have
I3 = f3A§(C3(jL)) _23A§C3C3(2[126])
2 12 2
C12 (M13(C3)) )
=(c, + = M2(C.) + c2) — (¢q1 +¢r0)MIZ(C
< 11 e C11(M1122(C3)+ ) (M5 (C3) 11) — (c1q 22)Mj3 (C3)

(M15(C3))? ) "
=(cyy + c? — | M12C,(A) — (¢4 + c,0)MI2(Cy),
< 11 12 L MZ(C5 () 12C3(A) — (cnn 22)Mi3(C3)

we use here the definition of f; = e Y1crepeq V' and2 \p Pd (see1(220), 246)—(48)),
_ 11 12 22 2, (M12(Cy))
f3 N e(LIJ + ¥ + ¥ )C 1 + C11 T C11(Mi%(c3)+ Ciﬂ.

We define the function I3 (A1) for A = (0, A ,) by

2 M12 C 2
3(1):= <c11 g Gz, (M) )M%%csu)—(cn + Ca2)MIZ(Cy)

C11 (3111\/13((:3(/1 )
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2 (M12(C ))2
= (C11 + zf) (M%%(CQ + Ajcqq) + T — (cp1 + sz)M‘g(Cﬂ-

C11

Since I3 = I3(X) it is sufficient to show that I3 (1) > 0 for A2 > 0.
We show that
a3 (A1)

a1, > 0.

I3 (0) = Oand
Indeed we have M 12(C5(0)) = M13(C3) hence

2 12
cr  Mi3(C3)
13(0) = <C11 + )M%g(cﬂ — (c11 + c2)MiZ(C3)

C11 C11
cf, + Mi3(Cs) ) _
- CZZ —_ O

C11

_ Mg(cg)(

013 (1) ct2
a)_z —_— C11+a C11> O.

Finally I3(A) > 0for A, > 0so013 =13(A1) =13(0,c,;) > 0 and (69) is showd. To

and

show that I¥ > 0 let us denote f, = e X 2= W™, Using (20) we have
q-1
fp=e > YP=e > WPied W o hf =0, (72)
1sr<p<q 1srsp<q-1 r=1
for 2 < q < m. We show by induction that
¥ = fiak (C(®)) Rtk (@) = 0,2 <k (73)

For k =2 and k = 3 it is showd. Let us suppose that it holds for k. To find the general formula
for IX (A1) with If > I¥ (X) we consider the cases m = 4.
Iy = f4A2(C4(7A\2 _ZE;LA‘i(CAL) = f3+ f*ATC(1)) = A4A%(C)I 1 5
A3A35(C ~
) ( e f‘*) A1C, (1) = R AL 5
(49)-(51) <(C11 + C22)Mi5(Cy) + cf3 (M13(Cy))?
M;3(Cs(A)) ci1 ¢1MjZ(Ca(A))
+ (M35 (C4))? >
Mg (C4)Mi§33, (Cy) + C11(M%32’ (C)? + (¢ + sz)(Mg (C4))?
X Mi53C4(A) = (c1q + €2 + €33)Mi53(Co)l; =5
(54) ((C11 + ¢22)Mi5(Ca) N Cf3 (M33(C4))? N (M323(C4))? )
> M5 (C4( 1)) c11 ciMiz(Ca(A))  MiZ(Ca)Mi25(Ca( 1))
X M133(C4(A)) — (c11 + €2 + c33)M133(Co)l =z
Sowe have I > 13 (A)], 5z where I3 (1) is defined by the formula
£ ()= <(C11 +c2)Mi5(Cy)  cfy (Mi5 (Cy))? 4 (M55 (Cy))? >
' MIZ(C(A)) cr caMiZ(Ca(A)) - MEB(COMIZE(CY))
X M133(Ca(A)) = (c11 + €z + €33)M153(Cy)
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az 123 123 %33 4(/1))
=|a; + M Cs(A)) +b; = a;M7%3(Ca(A)) + a + by,
where

C13 (M%_?Z, C4))2
al = —> 0 az - (C11 + C22)M (C4) + —_— > 0,
C11 C11

by = (Mi23(C4))*Mi3(Ca) — (11 +Cap +c33)Mi23 (Cy).
We show that I3(A) =0for A = (0, A,, A3),when 1, >0, A5 > 0. It then gives us
I > 1F () = 0. We have (see below the proof of IX(0) = 0,k > 3)
(Mi3(Cq))? | Mi35(Cy) )
140=< + + — ¢33 |Mi23(Cy) = 0
4( ) C11 11M%§(C4) MS(CL;) 33 123( 4)
Moreover, by inequality (35) of Lemma (4.1.22) we havefor A, = 0, A3 >0
OLi(A)  OMiF5 (C4(A)) d M%%?(Q(M)

= +a > 0,
ox, T 0k, 261 M%%(C4(7t))
M) (| a MG
075 MZ(C, (1)) 045 -
Let us consider the function
i1 () = 12 () = If (0,th,,th3),t € R
We have
diz () 0I7(A) . ol (1)<
i2(0) =I4(0) = 0Oand —~2= —="2%, + =%, >0
4( ) 4-( ) dt a/‘{z 2 a/‘{g 3
hence i (t) == 0 by the previous inequalities for t > 0. So
) it > 15(0,A2,23) = if (Ol=1 =0
To show that I} (1) > 0 we show that
K I ()
If(0) = 0,2< kandd 71 >0,2<p <k (74)

p
To define the function 151 (1) with I} > 141 (1) we have

I = fi + 145 (Cesad) = A AEE (Crn)
75
T fic + FD AL (Cerad) = A A (Cend)]

R k
(76) (AR (Crn)
> . +eijrk I}iii(ckﬂﬂ) Ak+1A£I%(Ck+1)|A:I

= \ AR (Cra ) ]
54) (AeAki i1 (Cear) ~
o (A Cer) |, 2%"‘ AL ConaD) = A AT G|,y = AL ()
= Akk+1(Ck+1A)

where the function IXF1(2) is deﬁned by (see definition (55) of ¥}:
K ) 2
I+1(2) = }LkM12 %1 (Cx+1) + + 2 (M12...K—1 (CK+1))
i Mllz2 11<< 11(CK+1(A)) M%zz'"rr(CK+1)M%22,',',}T(CK+1(A))
X Mi3"K 1(CK+1(/1)) s M35 (Cepr)
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K-1 MAZ-Ar o 2
/1le2 K— 1(CK+1) Z M35 Tk (Ciesn)
MEE T (Con ) i <cK+1)M%§ T(Crn (D)

AkM1122"'II§(CK+1)
X M]:_LZZIIC{(CK‘*']-(A)) + ( M]]:ZZ K- 1 (CK+1)) - Ak+1M]]..22.....III(<(CK+1)

Finally we have the following expression for I}}1 (1) with corresponding positive constants
a,2 <r<k-1 (depending on K)and b, € R

K+107Y — Mi2-K
L) = (a1 + 2 M1122 ;(CKH(A))) 12. K(CK+1(/1)) + by

= <a1 + rzzzm) Gk(ﬂ) + b1

By (35) of Lemma (4.1.22) we conclude that for A, = 0,2 < r <k, holds

W _ (N _ar )36
o \"TLeGm) . T

[k+1 k-1
L1 (D) 3G (1) d G(A)
=a—2 0N g — >0,2<p<k. 75
FY® YTon, 41,6, P (75)
For k =3, k=4 and k =5 we have

kM3
13 (0) _M1122< +__C22>= 0,

€11 C11

123

4 123 C13 (M13 Mi53
14 (0) - M123 + M12 + M12 — (33

C11M13 12
2 2 2 123N2
1500) = M1234 cia (Mg ) (Mi37)
5() 1234 C + M M12M123
11 G1Myp 121123

1234 34123
+ Mi334Mi33 — C44>

We show that k + 1 (0) = 0. Indeed, we get

2 123N2 12..k—2k—-1~N2 12..k
[K+1(0) = M2k ko (M) + (Mi3k) et (M1 2% + M5
k+1 12..k M 12 M12M123 M12 k— 2M12 k-1 M12 k-1
11 11 12 124123 12..k—2""12..k—1 12..k-1

- Ckk) .

Since by Corollary (4.1.20) we have
-1(Ck)  ATH(CR)| _
Ak—1(Ck)  AR(Ck)

AS(CHARZIR(CK) or

AZ1(C)  ATH(CR)

BCo Ay | W)

we conclude that
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Mi7%71 (G Mig=3 (Ci)

- = (MEA3 (€)”
MiZk(c,) MiZk=z2k(C) (MiZ:%=3 )

Hence
(MiziiTo " (C)* | Miz (G0 _ Migi Tk (Co)
Mi7525 (COMF i (C) - MiZEZ1(G) Mizu3 (G
and
€11 cuaMj;  MizMis3 My =sMigw=s M3 o)

- Ckk')

If we change k with k — 1 in the last expression we obtain the right-hand part (up to a
positivefactor) of the expression for I}(0).
Finally we have showd (74) for I¥}1 (1). Let us consider the function

ixi1 (O = I (tD),t R

We have
k
| difth () O D)
1 0) = 141(0) = 0and T = Z#% >0
p:

by (34) and Remark (4.1.22) So
i > KD = i @®],_, =0.
We recall (see (33)) thatforA = (14,...,4,,) € C"and1 < k < mwe denote
AL =(0,...,0, Aksq, ., A), A = (A4,...,24,0,...,0).

Gn(A) = Ag(Cn (D) = Z 25450,
2c5c{1,2,..,m}
we get

AL(Cn (D) = D AR (76)
oc6<{1,2,..k—1,k+1,.m}
If we put C,,, (A1) = C,,, + ¥™ .1 A,.E, in (76) we get
A (Ca@®)) = Y AR, (77)

ccSS{k+1k+2,..m}

Similarly, if we put C,,(1) = C,,(A%*) +¥™, ., 1, E,,. we get
AGCa@ = > 2sAWS (Cn(2%)) (78)

pcdc{k+1,k+2,.,m}

Using (72) we have
A ~\\ Y - A\ 1
fie = A AR (C) (Aﬁ (Ck(ﬂ))) = LAREET(Cn) (Al (Cn(D))
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hence IK = f, A¥ (Cm(i))—ikA’,ﬁ(Cm(A["])) > [X (1), where the function IX(1) is
defined by
k (3 2 kk+1..m 2\ ! gkk+1.m k 3 WL 2[k]
1 (D) = A (AIER(CaD)) Akt (€4l (Cn(R))) Aeaf (Cn(A4)
. ~ -1 Akk+1...m(C ) Ak(C (i[k]))
=1 Akk+1...m C (A) kk+1.m mA k\*m A
(AR (D) AT (Cn (D) AR(Cn(D)

75),(76) ~ o
75, 070) 3, (aggttn(en D)
x i | ARG ARG ‘
oSSk + LK +2,..,m} Akktl-mec (1)) AKYS(C,, (AK)))
Using (75) or (76) we conclude for 4 = (0,4,,...,1,,) € C™

U{k,k+1,.
A’,ﬁ’,ﬁi}j_:’,ﬁ(Cm(A)) - z AVA]}: U%k,k+1,...7rqn1i (G,

oy €(2,3,..k—1}

kuég k _ y U{k}UéS
AkBS (Cm(l{ })) - 2 AVAy U{k}ué (Cm)'
ey c{2,3,..k—1}

. . k}ués
Finally we obtain A7 tﬁk% s(Cm)
A A A -1
K = A (AEEETRCn (Cn(D)) >k
Sk F L k+2,.,m}

u{k,k+1,... }
AR Cn) AT sty (Cm)

X Ak
eyl | ASSC) AL s (Cn)
due to the Hadamard—Fisher’s inequality (Lemma (4.1.21)), fora = {k,k + 1,...,m} and
B = v U{k} U &. This completes the proof of Lemma (4.1.10).
Corollary (4.1.26)[260]: For the measure u2*** we have

(up e ~ pgtt,  vt? e By

(with ~ meaning equivalence).

Proof: The right action R, for t> € B} changes linearly only a finite number of coordinates
of the point x2 € X™*1,

Now we can define the representation associated with the right action
TR'#?“ . B(I)N >U (L2 (Xm+1“ugn+1))

in the natural way, i.e.

(547 1) ) = (ang (R 60)) faug () (R ().

det Yn+1
Corollary (4.1.27)[260]: We have d(f2 . {(fZ...,f?)) = %= (FP f20) —

(nt dnsr dnsa), Where dnyy = ((FF fits), (F2 fivnds -0 (fid, fiis1)) € R™
Proof: We may write
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n 2 n n
DotfE = fral| = D ttm BB SD = 2D 6l fr) + (B f)
k=1 km=1 k=1

= (Yt t) = 2(t, dysr) + (i1, frovn)s
wheret = (ty,t,,...,t,) € R™ Using (58) for 4,, = y,, we get

(Vntl t) - Z(t, dn+1) = (Vn(t - tO)' (t - to)) - (Vn_l dn+1r dn+1);
where t, = y,,; ! d,,. Hence we get (see (6))

n 2

fro = ) tf?

k=1
= (fivs for) (W dnyr, dne) + min (v (t —to), (t — t))

t=(ty )ER™
= (fnz+1' fnz+1) (yn_l dn+1J dn+1)-
Corollary (4.1.28)[260]:Let € > 0. For any s® = (s, ™y € R, and for any

ey Sy
a® = (@™,...,a™ ) € R"** n €N, we have

1+e 1+4e
X(1+2¢)(1+3¢) € {€xp (Z Sl(n) Aln> (Z a,({n) Akn) 1ln € N,1+ 4e <n)

=1 k=1
1+€ —
S 226y (1436 (S @, 1 + 4€) = oo,
— — ) _
Where S = (S(n))?{)=2+4ei a = (a(n))’(r)10=2+46' a1+3e =1 and
I Seare (s, a1+ 4€)
i |M€—(1+E)(1+26) (S(n))lz
n=2+4ec((;l_3_25)(1+26) - |M61(11+E)(1+26)(S(n))|2 + ||(A(1+36)n _x(1+2€)(1+36)D(1+26)n +Z]1¢-:i,€k¢1+zg 0(;((”) Akn )1”
Before proving Corollary (4.1.28) let us make some comments about the procedure for
arriving at the expressions used for the approximation of the variables x ;5143 0N the left-
hand side of the equivale.

Proof: If we put ¥, £, ME(TOU*29) sy = 1 we get

1+€ 1+4e
[z tn exp (Z Sl(n) Aln) (Z a;gn) Akn) - x(1+26)(1+3€)] 1
n =1

k=1

min
t=(tyx )ER™

tz(rg;{ti)an (Yuts ) = 2(t, dps1) + (Fivns frvr)

~. (79)

2

1+e€
= lz ty, exp z Sl(n) A (A(1+36)n — X(1426)1+36)D1+2e)n T X(1426)(1+36)D(1426)n
n

=1
1+4€ 1 2
)
+ Z al(cn Akn) — X(1426)(1+3¢) | 1
k=1,k+1+3€ ]
1+e
1+€)(1+2
= Z tn x(1+26)(1+36) D(1+26)‘)’lexp z Sl(n) Aln - Mfr(z o) © (S(n))
n =1
1+e€ 1+4€ 2
+ ™4, A = D + ™ A |1
exp Sy n (1+3e)n — X(1+26)(1+3e) Y (1+26)n Ay kn
1=1 k=1k#1+3€
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1+€
1 1+2
(D(1+26)nexp (2 Sl(n) Aln) - Mfr(l rearze (S(n))>

= Z 2 ||9C(1+2e)(1+3e)”2
n =1

1+e
+ exp (Z Sl(n) Aln) (A(1+36)TL - x(1+26)(1+36)D(1+26)n
=1

1+4€
+ z al™ Akn>1

k=1,k+#1+3¢

2
=Ztﬁ ||x(1+26)(1+3€)|| ( ((326)(“26) |M (1+6)(1+26)( (n))| )

2

n
1+€
+ [|+exp (Z Sl(n) Am) (A(1+36)n — X(1+26)a+36)D1+2e)n
=1
1+4€ 2
+ Z al” A,m) 1
k=1k+#1+3¢

where we have used the equality ||§ — M&||2 = ||€]|? — |Mé&|?:

1+€ 2
i D(1+2€)Tl exp (z ™ Aln) M‘E(HEXHZE) (n)] 1
=1
2
= [Dszen 1|l - ML+ ()]
_ (1+€)(1+2€) 2
= C(IL+26)(1+26) - |M€n ‘ ) (S(n))| -
Corollary (4.1.29)[260]: For C € Mat(1 + 2¢,C) and A2 € C'*2€ we have
1+2€
G142¢(A%) = A§(C1+26(/12)) = detCy42.(1%) = detCyype + Z AZA7 (Cl+26(/12[r]))1 (80)
1+2¢ -
%ig(cl+26(/12)) = Aﬂg(CHZe) + z /1514; (C1+26(AZ[T])); (81)
r=1r+l1+e€
1+2€
Grr2e(?) = AY(Cry2e(®)) = detCyype(A?)detCyze + Z 2247 (Crize(220)) (82)
1+2¢ B
1
AHEE(Crize(BD) = AE(Crane) + z AT (Cryze(2207)), (83)
r=1r+*1+e€
where for 2 € C,,,. and € > 0 we have set
20+l = (0,...,0,A3,,...,A%2,,.), 220+ = (A2,22,...,22,.,0,...,0). (84)

Proof: We have for m = 2 using (25)
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Go(2%) = detCy + BAY(Cy) + A3A5(Cy) + IRAZAB(C,)
= detC, +AZ[A (Cy) + A3A12(C,)] + A343%(C,)
= detC, +23A%(C,(22124)) + 2343 (C,(2212)),
GZ(AZ) = detC, +AZA 1(C) + /12[A§(C'2) +/12A%§(C2)]
= detC, + 13A%(C,(221)) + 1343 (G, (2@)).
For e = 1 we have
G3(A%) = detC3; + A3A1(C3) + A345(C3) + 23A43(C3) + 1323415(C3) + A222A413(C))
+ /12/12A§§(Cg) + ﬂzﬂzﬂzA%E%(Cs)
2 2 512 2 213 212 5123
= detC, + A7[A1(C3) + A3A15(C3) + 13413(C3) + A5A5A4153(C3)]
+ A3[A3(C3) + A3A453(C3)] + A343(Cs)
= detC; + 1241 (C;(A2124)) + 2343 (5(2202%)) ) + 4343 (¢ (A212291)),

G3 (/12) = detC3 + AZAI(C3) + /12 [AZ (C3) + AZA%%(CE;)]
+ 3[41(C5) + ﬂzAiﬁ(Cs) + A3433(C3) + A{A34153(C5)]
= detC; + 2341 (Co(221)) + 23 (43C,(2@) ) + 2343 (G, (20)))

For € > 1 the proof of (80) and (82) is the same. The identity (81) follows from (80) and (83)
follows from (82).

Section (4.2): Infinite-Dimensional Groups

The induced representations were introduced and studied for finite groups by
F.G.Frobenius. The aim is to develop the concept of induced representations for infinite-
dimensional groups.

We devoted to the notion of induced representations elaborated for a locally compact
groups by G.W.Mackey [1], [11] and to the Kirillov orbit methods [163] for the nilpotent Lie
groups B(n, R).

We extend the notion of the induced representations for infinite-dimensional groups.

We start the orbit method for infinite-dimensional “nilpotent” group BZ , construct the

induced representations corresponding to the generic orbits and study its irreducibility.
We remind the Gauss decomposition of n X n matrices and Gauss decomposition of infinite
order matrices More precisely, we give the well-known definition of the induced
representations for a locally compact groups we remind the Kirillov orbit method for finite-
dimensional nilpotent group G,, = B(n, R). The induced representations, corresponding to a
generic orbits of the group G,,.

We give a new proof of the irreducibility of the induced representations corresponding
to a generic orbits in order to extend the proof of the irreducibility for infinite-dimensional
“nilpotent” group BZ .

We remind the definition of the regular and quasiregular representations of infinite-
dimensional groups. As in the case of a locally compact group these representations are the
particular cases of the induced representations. This gives us the hint how to define the
induced representations for infinite-dimensional groups. The definition is done in the
questions concerning the development of the orbit method for infinite-dimensional
“nilpotent” group BY and BZ are discussed in
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The completions of the initial groups G are necessary to the definition of the induced
representations for the initial infinite-dimensional group. The completions of the inductive
limit G = lim G,, of matrix groups G,, are studied in We show that the Hilbert-Lie groups

-n

appear naturally in the representation theory of the infinite-dimensional matrix group. We
define a family of the Hilbert-Lie group GL,(a) (resp. B,(a)), a Hilbert completions of the
group GLy(200,R) = limGL(2n — 1,R)(resp.B: = —lim B(2n — 1,R)).

-n -Nn

We show that any continuous representation of the group GLy (2, R) (resp.BL) is in
fact continuous in some stronger topology, namely in a topology of a suitable Hilbert -Lie
group GL,(a) (resp. B,(a)) depending on the representation.

We construct the induced representations of the group BZ corresponding to a generic
orbits. The irreducibility of these representations is studied .The very first steps to describe
some part of the dual for the group N and BZ are mentioned induced representations. The

induced representation In deS Is the unitary representation of a group G associated with a

unitary representation S : H — U(V ) of a closed subgroup H of the group G. For details, see
[140], Suppose that X = H\ G is a right G—space and that s : X — G is a Borel section of the
projection p : G — X = HI': g 7— Hg. For Lie group, such a mapping s can be chosen to be
smooth almost everywhere. Then every element g € G can be uniquely written in the form

g = hs(x),h € H,x € X, (85)
and thus G (as a set) can be identified with H X X. Under this identification, the
Haar measure on G goes into a measure equivalent to the product of a quasi-invariant
measure on X and a Haar measure on H. If a quasi-invariant measure ug on X is appropriately
chosen, then the following equalities are valid

Ag(h)

4:(9) = 37 gy G, (86)

dus(xg) _ Au(h(x,g))

dus(x)  Ag(h(x,9))’
where A is a modular function on the group G and h(x, g) € H is defined by the relation

s(x)g = h(x, g)s(xg). (88)

Recall that a modular function on a group G is a homomorphism G 3 t = A;(t) €
R, defined by the equality h't = A.(t)h, where h is the right Haar measure on G, L is the
left action of the group G on itself and hlt(C) = h(tC).
Remark (4.2.1)[161]: If the group G is unimodular, i.e A; = 1, and it is possible to select a
subgroup K that is complementary to H in the sense that almost every element of G can be
uniquely written in the form

(87)

g = hk,h € Hk € K, (89)
then it is natural to identify X = H\G with K and to choose s as the embedding of K in G
s: K » G. (90)

In such a case, the formula (86) assume the form

dg = Ap(R)~'d,(Wd.(k). (91)
If both G and H are unimodular (or, more generally, if A;(h) and Ay (h) coincide for h € H),
then there exist a G-invariant measure on X=H\G. If it is possible to extend Ay to a
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multiplicative function on the group G, then there exist a quasi-invariant measure on X which

Is multiplied by the factor i“—i"g under translation by g.

g

Now we can define In d gS (see [140]). Let S: H — U(V ) be a unitary representation

of a subgroup H of the group G in a Hilbert space V and let u be a measure on X satisfying
condition (87). Let H denote the space of all vector-valued functions f on X with values in V
such that

IfII? := fx If COllZ du(x) < oo.

Let us consider the representation T given by the formula

dy, 1/2
T@AE =A@ Go) = 50 (D) fGo) O
where
Alx,g) = |2l s, (93)

and where the element h = h(x, g) is defined by formula (88).
Definition(4.2.2)[161]: The representation T is called the unitary induced representation and
is denoted by Ind% S.
Orbit method for finite-dimensional nilpotent group B(n, R). See Kirillov [139] and [140].
”Fix the group G, = B(n, R) of all upper triangular real matrices of order n with ones on the
main diagonal. (The Kirillov notation for the group B(n, R) is N + (n, R)).
The basic result of the method of orbits, applied to nilpotent Lie groups, is the description of
a one-to-one correspondence between two sets:
(a) the set G of all equivalence classes of irreducible unitary representations of a connected
and simply connected nilpotent Lie group G,
(b) the set O(G) of all orbits of the group G in the space g* dual to the Lie algebra g with
respect to the coadjoint representation.

To construct this correspondence, we introduce the following definition. A subalgebra
h c g issubordinate to a functional f € g~ if

(f,[x,y]) = 0 forallx,y € h,
i.e. if h is an isotropic subspace with respect to the bilinear form defined by Br(x,y) =
(f,[x,y])on g.
Lemma(4.2.3)[161]: (Lemma 7.7, [140]). The following conditions are equivalent:
(a) a subalgebra h is subordinate to the functional f,
(b) the image of h in the tangent space T,( to the orbit Q in the point f is an isotropic
subspace,
(c) the map
x = (f,x)

Is a one-dimensional real representation of the Lie algebra h.
If the conditions of Lemma (4.2.3) are satisfied, we define the one-dimensional unitary
representation Uy , of the group H = exp h by the formula

Uru(exp x) = exp 2mi(f, x).
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Theorem(4.2.4)[161]:(Theorem 7.2, [140]). (a) Every irreducible unitary representation T of
a
connected and simply connected nilpotent Lie group G has the form

T = Indf Uy py,
where H c G is a connected subgroup and f € g*;
(b) the representation Ty ; = Inde,Uf,H Is irreducible if and only if the Lie algebra h of the
group H is a subalgebra of g subordinate to the functional f with maximal possible dimension;
(c) irreducible representations Tt u, and Tf, , ar€ equivalent if and only if the functional f;
and f,belong to the same orbit of g*.”
Example(4.2.5)[161]: Let us consider the Heisenberg group G; = B(3,R), its Lie algebra g

and the dual space g*. Fix the notations
1 x12 X33
0 1 x5,
0 0 1

1 x, x5 0 0 0
0 0 1 Y31 Y32 O

The adjoint action Ad : G — Aut(g) of the group G on its Lie algebra g is:

g = BGR) =

g = BG,R) =

g 3 x v~ Ad,(x) := txt™! € g,t € G, (94)
the pairing between the g and g*:
gX g3 00 P G = () = ) Gy €R (95)
1<k<n<3
Since tr(txt~y) = tr(xt~1yt) the coadjoint action of G on the dual g* to g is
g 3y Ad; (y):= t7'yt)—€ g't € G, (96)

where (z)— means that we take lower triangular part of the matrix z.
To calculate Ad; (y) explicitly for n = 3, we have

1 x5 x5 /0 0 0 1 x5 x93
t™yt =10 1 X3 y2 0 0 0 1 x5
0 O 1 Y31 Y32 0/ \0 0 1

1 ti; x93+ tiatss 0 0 0
= (O 1 —t,3 ) ()’21 Y21t12 Y21t13 )»

0 0 1 Y31 Yaitiz T Y32 Yaitiz + Y3ala3
hence
0 0 0
Ad; (y) = (t_lyt)— = y21_t23y31 0 0

Y31 Y31tz +y32 O
We have two type of the orbits O:

(1) if y;; = 0, then (ygl , )z(y21,y32)f0rfixed Vo1, Va, is O-dimensional orbit:
32

(1) if y3; # 0, then ( R )is 2-dimensional orbits.
y31 R
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In the case (I) fixe the point f = (y,1, V32), the subordinate subalgebra h coinside
with all g, since [g,g] = (Ei3):= {tE;3|t € R}. Corresponding one-dimensional

representation of the algebrah = g is
1 X132 X3 0 0 0
b5 )6 29
0 0 1/ \ys1 ¥32 O

_ = X12Y21 T X23Y32 €ER.
The corresponding representation of the group G is

G 3 exp(x) » exp(2mi(f,x)) € St (97)
So we have 1-dimensional representation
1 x12 X33
Gz 3 exp (0 0 xz3> — exp(2m;(X12Y21 + X23Y32)) € ST
0 O 1

1 x5 X3 1 x1p Xxq3 +3%12%23
exp(x) = 0 0 Xo3 | = 0 0 X23 .

0 0 1 0 0 1
In the case 2) we have two subordinate subalgebras of the maximal dimension

0 0 xq3 0 X1 X3 0 0 O
hy =<0 0 x23>,andh2 =<0 0 0 ).Setf =<y21 0 0),
00 0 0 0 O Y31 X130
The corresponding one-dimensional representations of the subalgebras h;,i = 1,2 are
hy 3 x » (f,x) = X13Y31 + X23Y3, ER,

hy, 3 x » (f,x) = X12Y21 + X13¥31 €R
The corresponding representations S of the subgroups H; and H, respectively are:

g3 x - (fx) =tr(xf) = tr

We note that

1 0 x5
H, 3 (0 1 Xzs) = exp(x) » exp(2mi(x13y31 + X23Y32)) € ST,
0 O 1

1 X132 %3

H,3(0 1 0 |= exp(x) » exp(2mi(x13y,1 + X13Y31)) € StIn the case H; we
0 0 1

have the decomposition G; = R? x B(2,R) =~ H; X R, indeed we have

1 x1, X3 1 0 x3\/1 x4, O

Gs 3 (o 1 x23> = (0 1 x23> (0 1 o) € R? x B(2,R),
0 O 1/ N0 0 1/\0 0 1 _

hence the space X = H,\Gs is isomorphic to B(2,R) =~ R and s can be choosing as the

embedding s : B(2,R) — B(3,R).

1 1 x O
BR)3 (. Y)y=:x»s(x) =[{0 1 0|e BB R).
0 1
0 0 1
For general n we have
B(n + 1R) = R? x B(n,R). (98)

To calculate the right action of G on X i.e. to find h(x, t) such that
s(x)t = h(x,t)s(xt),
we have forx € B(2,R)andt € B(3,R)
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1 x 0\ /1 t1, t43 1 x+t, x93+ xty3
s(x)t=(0 1 0J[0 1 ¢t5]=(0 1 tos
0 0 1/ \0 O 1 0 0 1

1 0 x93+xt3\/1 x4+t O
= (0 1 ts3 ) (O 1 0)
0 0 1 0 0 1

1 0 xq3+xty;
= h(x,t)s(xt), hence h(x,t) = (O 1 ta3 >
0 0 1
Finally, the induced unitary representation Indﬁ,1 S have the following form in the Hilbert
space L?(R, dx) (case H; and f = y3,E3,):
f(x) S(h(x, t))f(Xt) = exp(2mi(tyz + tr3x)yz)f(x + ty2). (99)
In the Kirillov [140] notations we have:

1 t, t43 1 a c
f(x) = expRmi(c + bx) N)f(x + a),y3; =, (0 1 t23> = <0 1 b).
0 0 1 0 0 1
We show following A. Kirillov [140] how the orbit method works for the nilpotent group

B(n, R) and small n.
For general n € N the coadjoint action of the group G, on g is as follows

t=1+ z tymE km,Y = z tymE km,t_1 = I+ z tlzr;Ekm

1<k<msn 1sm<ksn 1<k<msn

hence

q q n

(tyt_l)pq = Z(ty)pmtr;l%z = Z zterrmtn_ﬂL}q, 1 <pq=n,

m=1 m=1r=p

and
Ad: () = (tyt)_ = I + 2 (™8 pg Ene. (100)
1<g<psn

Example (4.2.6)[161]: Generic orbits for the group G = B(n, R) (see [140], Example 7.9).
“The form of the action Ad; (y) = (t — 1yt)_ implies, that Ad; ,t € G acts as follows: to
a given column of y € g*, a linear combination of the previous columns is added and to a
given row of y, a linear combination of the following rows is added. More generally, the
minors Ay, k = 1,2,...,[2], consisting of the last k rows and first k columns of y are
invariant of the action. It is possible to show that if all the numbers ¢, are different from
zeros, then the manifold given by the equation

n
Ae=c, 1<k< [5] (101)
Is a G-orbit in g*. Hence generic orbits have codimension equal to E] and dimension equal to

n(n-1) _
2

[g ]- To obtain a representation for such an orbit, we can take a matrix y of the form

7= (x o
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where A is the matrix of order [%] such that all nonzero elements are contained in the anti-

diagonal. It is easy to find a subalgebra of dimension [%] X ["T“] subordinate to the
functional y. It consist of all matrices of the form

(o o)
n+1 n+1

where Aisan [Z] x [==]or [==] X [>] matrix.”
Example(4.2.7)[161]: Let ¢ = B(5R),g = n,(5R),g* =
repre-sentations for generic orbit corresponding to the point y

Seth; = {t~! |t € H3}where

n_(5R). We write the
= ¥51E51 + VB € g7

f/ X12  X13 X114 xls\\ f/l 0 0 ¢ty tls\\
J 0 1 x23 x24— x25 L J 0 1 O t24 t25
=10 0 1 x4 JHy =50 0 1 tss tss
L\o 0o 0 1 x45 L\o 00 1 0
0 0 0 0 1 00 0 0 1

(/0 0 0 0 \
! V21 0 0 o l
= g*

| V31 V32 0 0
l\m Yaz Yaz 0 o J
Ys1 Ys2 Ys3 Ysa O
The corresponding representation S of the subgroup H; of the maximal dimension is:

Hy 3 t & expriy,(t — D)) = exp(2mi[tisys1 + traYaz]) € S
For the group B(5, R) holds the following decomposition

B(5,R) = B3B(3)B® i.e.x = x3x(3)x®, (102)
where
(1 X3 X3 0 0\ (1 0 0 ¢ty t15\
0 1 X23 0 0 0 1 0 t24 t25
B® =<0 o 1 0 0fp,.BB =30 0 1 ts t35l
0 0 1 0 \0 00 1 0 /
0 0 o0 1/) 0o 000 1/)

0 O
(010
0 0 1

0 O

0 O

We calculate h(x, t) in the relatlon s(x)t = h(x,t)s(xt), but first we fix the section s :

= H\G — G of the projection p : G — X. To define the sections : X = G we show
that in addition to the decomposition (102) the following decomposition B(5R) =
B(3)B3B® also holds. Indeed, to find h € H; = B® such that x = hx;x®), we get
x3x(3)x® = hxzx®, hence
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100x14x15WK1000 0\‘

0 1 0 X4 X25 01 0 O 0

h=xxBx3' =10 0 1 x3, Xas 0 010 O
000 1 x45/\0001—x45/
0O 0 0 O 1 0 0 0 O 1

0 x4 x15—x14x45\
0 X4 X5 — X4Xys

1
0

=10 X34 X35 — X34X45 | € B(3).
0 1 0
0O 0 0 O 1

We have two different decompositions

B3B(3)B® 3 x3x(3)x® = hxyx® € B(3)B3B®,withh = x3x(3)x3?
Remark (4.2.8)[161]: For an arbitraryn,m € N,1 < m < n, we have for the group G,, =
B(n, R) two decompositions:

SO R O/

G, = B,B(m)B™ 3 x, x(m)x™ = hx,x™ € B(m)B,,B™,h
= xpx(m)x;;t, (103)
where

=+ ) xEelbBem) = I+ ) xE}BM
m<k<rsn 1<sksm<rsn

= {{+ Z Xier Ejer }-

1sk<rsm

Since X = B(m)\G, is isomorphic to B,,B(™ by decomposition (103), the section scan be
choosing, by Remark(4.2.1) , as the embedding
B,BM™ 3 x,x™ v s(x,x™) = x,x™ € B,B(m)B™,
Since s(x)t = h(x, t)s(xt), we have h(x,t) = s(x)t(s(xt))1. It remains to calculate
s(x)t and s(xt).
Remark(4.2.9)[161]: We have
h(x,t) — 1 _{ (m) Ofort € BB
xM(t — Dx;}, fort € B(m)’
Indeed, let t = t,,t(m) € B,B™ . then s(x)t = x,x™¢t,,t(™ = x, t, x™t™We
get also xt = x,x™t, t™M™ = x t. x™t(M s0s(xt) = x,t,x™t™ | hence
s(x)t = s(xt) and we get h(x,t) =e. For t:= t(m) € B(m) and x = x,,x™ €
B,,B(m) we get
st = x,x™t = x, xMt(x™)"1x (M = x F(m)x™ = hx,,x™
= h(x,t)s(xt),
where ¥(m) = x™)t(x(m))~1. Then we get by (103)
h(x,t) = h = xp,x(m)x;! = x x(m)t(x(m))_lx‘1 = xmx(m)t(xmx(m))_l, (104)
xM 0 t—1, [ (x™ 0 1x™  (t—Dx;!
ren =(*0 )t (( ) >_( (¢ = D)

Xm Xy 0 1
(1 H(x, t)) (105)
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where

(x,t) := x(M(t — Dx;;b. (106)
Denote by E,.(t) := I + tEy,,t € R the one-parameter subgroups of the groups B(n, R).
We would like to find the generators A,,, = % Ty 4tE,, |e=0 OF the induced representation T;
(112).
SetforG, =B,B(m)B™and1 <k <m <r <n

Sir (tkr): =y, (h(x, Er(tir))- 1)),

then

d
T exp(21iS; (t))|e=o = 2miS)-(1). (107)

Let us denote by S the following matrix:

S = (Skr)isksm<rsn, Where Si = S (1), then S = (Zni)_l(Akr)k,r- (108)
Lemma(4.2.10)[161]:Let B = (by)'kr=1 € Mat(n,C). Define the matrix C =
(Ckr)z,r=1 € Mat(nr C) by

Cr = tr(ExB),1 < k,v < n,thenwe have = BT, (109)
where Ej, are matrix units and BT means transposed matrix to the matrix B. The equality
C = BT holds also in the case when B is an arbitrary m X n rectangular matrix. The
statement is true also for matrices B € Mat(oo, C).

Proof. Indeed, we have tr(E,,B) = b,.

We calculate now the matrix S(t) = (Skr(tkr))kr and the matrix S = (S, (1)), Using
Lemma(4.2.10) Using (106) we have

(y,h(x,t) — I)= tr (H(x,t)y) = tr((m)t()x;l1 y) = tr(tox;ll yx(m)) =

tr (toB(x,y)),wheret, = t- I and

B(x,y) = x;! yxM = (1 0 )(0 0) =< 0 8). (110)

0 x;')\y 0 x;Lyx (M)
By definition we have

Sir(tir) = (y» (h(x, Exr(tir)) — I)) = tr(ti-ExrB(x,¥)),
hence by Lemma(4.2.10) and (4.2.3) (110) we conclude that

S = SkrWir = r BB, )iy = BT (x,y) = )T y" (x! )"

_ (8 (x )T 36T (X" )T>_ (111)

So the induced representation Indg (S): G » U(L*(X,n)) corresponding to the pointy €
g™ has the following form

dp(xt)
du(x)

(Tf) (%) = S(h(x, t))( )z Fxt),f € P(X,1),x € X = H\G,t € G, (112)

where

S(h(x,t)) = exp(2mi(y, (h(x,t) — I))) = exp2mitr ((t — B(x,y)). (113)
We calculate B(x, y) and S for different groups G,. For G5 we get by (110):
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1 X12 X193 X14  Xqg 0 0O 0 0 O
G5=l0 0 1 x3 xss|l,y=1]10 0 0 0 0f,x®
0O 0 O 1 x45/ \0 Y42000/
0 010 0 1 vs¢¢ 0 0 0 O
X12  X13
1 x
= (O 1 x23>;X3 = (0 is);
0 O 1
1 x3\(0 Y20 O Lxg X
By = (2 =)(, 72 )0 1
0 1 Y25 0 0 1
_ (x;51y51 Yaz + X35 Vs1X12  YazXoz + x4_51y51x13)
Ys1 Ys51X12 Y51X13

hence by (111) we have
1 x X
-1\ 7/ 0 0 12 X13
S:=B(x,y)T = (1 X4s )( Y42 )(0 1 x23>

0O O
0 1 V51 0 0 1
X15 V51 Vs1
Va2 +Xis Vs1X12  Ys1X12 (114)

Ya2X23 T ¥s51X12  Ys51X13
Remark(4.2.11)[161]: For the matrix x = I + X i<k<n<m XxnExn € B(m,R) we denote

by xp. the matrix elements of the matrix x™1i.e.x™ =:1 + Y ckenem Xin Exn €
B(m,R).

The explicit expressions for x,, are as follows (see [165]) Xjir1 = —Xkk+1s
n—-k-1
-1 _ -1
X = —Xgn + z (=" z Xki, Xiji, - Xk <n —1. (115)
r=1 k<i;<ip<.<ip<n

The generators Ay, = % Ti4tE,,le=o Of the one-parameter subgroups Ei,(t):= 1 +
tE, t € R generated by the representation T, (112) are as follows (see (108) and(114)):

Ay = Di3,A13 = Dy3, Ayz = x12D13 + Das, Ays = Dys, (116)
L Ay Ags X35 V51 Ys1
S = %(‘424 AZS) = Vaz+Xa5 Vs1X12 YV51X12 (117)
Azs Ass VazXo3 + X33 ¥51X12  Ys1X13

0

Where Dy,,, = " For example, to obtain the expression A,; = x;,D;3 + D,3 we notethat
kn

1 x5, x3\/71 0 O 1 x5 x93 +txqgy
B(3, R) =) x(] + tE23) =10 1 X33 0 1 t) = (O 1 X33 +t )
0 O 1 0 0 1 N0 0 1
Here we denote by kn = Dy, (h) the operator of the partial derivative corresponding to the

shift x — x + tEy, onthe group B,, X B™ 3 x = (x4,,)xn and the Haar measure h:

d (dh(x + tEw)\? -
a( dh(x) ) f(x + tEkn) |t:07Dkn(h)-—

D (M) (x) = (118)

d kn
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1 X23 X24 Xy
Example(4.2.12)[161]:Let G = B(4,R) = 8 (1) xi‘* §35 The representations for
25
0 0 0 1
genericorbit corresponding to the point y = y,3FE 43 + ys2FEs, € g°.
We calculate S in two different ways. First using (110) we get

B(x,y) = x! yx ™ = (1 x4—51)( 1 Y43> (1 X23) _ (x;slysz Vaz + X;51x23>

Ca g 0 1/\Ws2 O 10 01 . Ys2 . X023Y52
24 Azs V52
ﬁ(AM A34> =S=B"(xy) = <x23 1) ()’43 0 )<x4_51 1)
_ ( X35 Ys2 Ys2
Yaz + X251Y52X23 Y52X23
Azz = Di3, Ays = Dys
From the other hand, by (105) we get h(x,t) = ((1) H (916’ t)), where

H(x, £) = x® (¢ = Dt =(1 ng)(tm tzs)(l x;;)

0 1/\tzs t3s5/\0 1
_ (taa + Xo3tzs  (t2a + Xo3t34)X45 + bas + Xo3t3s
= —1 (119)
L34 l34Xy5 t o5 + 135
Therefore,
(v, (h(x,t) = 1)) = h(x,t)34Y43 + h(x, t)%5y52
= t34Ya3 T [(t24 + Xp3t34) X35 + o5 + X23t35] Vs,
Hence
S (524(t24) 525(t25)> = () = ( t24%X15 Vs2 t25Y52 >
? S34(t34) 535(t3s) {3443 T+ x23t34x4_51y52 X23l35Y52 ’
S24  S2s x4_51y52 YVs2 >
S, = $,(1) - ( :
2 2 (534 535) Va3 + x451y52x23 Vs52X23
1 0)( 0 y25) ( 1 0)
= _ 120
<x23 \ms 0 /)\xzg 1 (120)

Example (4.2.13)[161]: Let G = B(6,R),g = n,(6,R),g* = n_(6,R). We write the
representations for generic orbit corresponding to the point y = y,3E43 + ysoEs, +
Ye1Ee1 € g7Set
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(/1 x5 X13 X114 X15 Xi6\ ) (/1 0 0 X154 X5 X6\
/0 1 X3 Xp4 X25 x26\ /0 1 0 X4 X5 X6
_J| 0 O 1 x34 X35 X36 | _J10 0 1 X34 X35 Xzg |
=100 0 1 7 x| (™ Vo001 0 olf
\0 0 0 0 1 x56/ \0 0 0 0 1 0/
\\0 0 0 0 0 1/ J \\0 0 0 0 O 177
1 O 0O 0 0 O
(0 0 0O 0 0 0\
oo 0o 00 0
Y=l 0 0 ys 0 0 0]

\O Ys2 0 0 O 0/
¢ 0 0 0 O 1
h; = {t — I |t € Hs}. The corresponding representations S of the subgroup Hj; is:

Hy 3 exp(t — 1) =t expmi(y, (t —1))) = exp(2mi[tzaVaz + tY52 + t16V61]) € St
For the group B(6,R) holds the following decomposition

B(6,R) = B3;B(3)B®i.e.x = x3x(3)x®), (121)
where
1 x5, x3 0 0 0 1 x, X13 X14 Xi5 Xy
/0 1 X3 0 O 0\ 0 1 Xy3 X4 X25 X326
@ _1 00 1 0 0 0] _| 0 O 1 X34 X35 X36
=100 0 100] Tl o0 0 1 xes x|

\00 0010/ \00 0 0 1 Xsg
00 000 1 0 0 0 0 0 1

10 00 0 O

0100 0 O

e—|0 010 0 0

3 0 0 0 1 X5 X

0 0 0 0 1 Xs

00 000 1

We get by (110) and (111)

1 x5 x4 0 0 s\ /1 x5 x3
Bx,y) =10 1 x5 0 ys2 O 0 1 x3

0 O 1 Ye1 O 0 0 O 1

XjeYe1 XasVsa+XiaVe1X12 Yaz + Xas VsaXaz + Xig Ve1X13

=| %56 V61 Vs2 + X5¢ Ve1X12 Vs2X23 + X545 Ve1X13 :
Vo1 Ye1X12 Y61%X13
hence

1 0 O 0 0 Yer 1 0 O

S=B"(x,y) = <x12 1 0)( 0 ys2 O ) X;g 10

X13 X3 1/ \yuz O 0 Xy Xze 1
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-1 -1
X416 Vo1 X56 Y61 V61
-1 -1 -1
X45 V52X46 Y61X12 YV52X46 Y61X12 Ye1X12

Vaz + Xa5 Vs2X23 + X3¢ Ve1X13  YsoXa3 + Xie VerX13  Ye1X13
Using again (108), (112) and Remark (4.2.9) we get the following expressions for the

d
generators Ayn, = — Tiyex,, |e=o OF ONe-parameter subgroups I + tEyy,, t € R:

Ayp = Dyp,A13 = Di3,Azz = X13D13 + Dy3, (122)
Ays = Dys,Ags = Dyg, Ase = X45D46 + Dse, (123)
. Ay Ais Ags X36 V61 X56 Ve1 Ye1
S = ﬁ(AZ“ Ass AZG) = X35 Vs2Xag Ve1X12 Vs2X16 Ve1X12 Ye1X12 | (124)
Azs  Azs Az Vaz + Xis VsaXo3 + Xie Ve1X13  Vs2Xa3 + Xad VerX13  YerX13

We recall the expressions for B(x,y) and hence for S = B(x,y)T for small n. For n = 4we
have

= o 0 Y. 1 x Xia + x;d x
B — =1 ..(m) — (1 X45 )( 43) 23y — < 45 Y52 Va3 45 Y52 23)
(xJ y) xm yx 0 1 y52 0 ( 0 1 ) y52 y52x23

.1 0,70 wys\/1 0\_ X15 Vs2 Vs2
S=( 1 ) 0 -1 1)~ -1 :
X23 Y43 X45 Va3 T X45YV52X23  Vs52X23

For G3 = B(6,R) (see (2.41) for the notation G/ ) holds:

1 X8 Xpo 0 0 a3\ /1 x5 X3
Bx,y) ={0o 1 x| 0 ¥s2 0 ][I0 1 x5

0 0 1 Yo 0 0/\0 O 1
XieVe1 Xio¥sz +XiaVe1X12 Yaz + Xas VsaXaz + X360 Ve1X13
X56Ve1  Ys2 + X5 Ve1X12 Ys2X23 + X560 Ve1X13 )
Vo1 YVe1X12 Y61X13
Hence
X36 Vo1 X56 Vo1 Vo1
S = X315 Ys52Xz6 Ve1X12 Vs2X36 Ye1%X12 Yo61X12

-1 -1 -1
Yaz t X485 V52X23 T X46V61X13  Y52%X23 T X46Ve1X13  Ye1X13

1 0 0y/0 0  Ye1 1 0 O
=<x12 1 0)(0 Vs2 o) g 100
X13 X23 1/ \yuz O 0 Xag Xse 1
For G3 ~ B(8,R) holds:
1 Xo1 Xo2 Xo3 Xo4 Xos Xoe Xo7 0 0 O 0 0 0 0 O
0 1 xp X3 X4 Y15 X6 x17\ / 0 00 O 0 00 0\
0 O 1 X3 X24 X25 Xz6 X27 0 0 O 0 0 0 0 O
0 00 1 X34 *35 X36 X37 000 O 0O0O0O
0 0 0O 1 xd xg x|V 7 0 00 Yaz 0 0 0 O
0 0 0O 0 1 xgt x37 0 0 Ve, 0O 0 0 0 O
0 0 0 O 0 0 1 ;! 0 ye 0 0 0 0 O 0/
0 0 0 O 0 0 o 1 / Y70 0 0O 0 0 0 O

As before we have
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/1 Xoe Xpd x4_71\ 0 0 0
_10 1 x} X5 0

1 Xo1 Xo2 Xo3
0 1 X12 X13
B(x, =
( y) \0 0 1 x6_71 0 Vo1 0 0 1 X33
0 0 o 1 Y7o 0 0 0 O 1
1 0 0 O
-1
_ X5 1 0 o
S = G Y R =05 a1 g
xpt x5 X7 1

New proof of the irreducibility of the induced representations corre-sponding to a generic
orbits.

The condition of “maximal possible dimension” is difficult to extend for the infinite-
dimensional case. That is why we give another proof of the irreducibility of the induced
representation of a nilpotent group B(n, R) that will be extended for the infinite-dimensional
analog BZ of the group B(n, R).

Let us consider a sequence of a Lie groups G;* and its Lie algebras g5t ,m € Z,n €
N defined as follows

G:r={1+ > xknEkn},g;" ={ > xknEkn}. (125)

m-nsk<nsm+n+1 m-nsk<nsm+n+1
We note that for any m € N holds B% = lim G[* . We have the decomposition (see(93))
-n

G™ = BpnB(m,n)BmM,

where
Bm,n = {I + Z xkrEkr}fB(mrn) = {I + z xkrEkr}'
(kr)EAmn (k,r)eEA(m,n)
gmn) — {1 + Z Xier Exr ),
(k,r)ealmmn)
and

Alm,n) = {(k,r) EZ*|m —n<k<m<r<m+n+ 1},
Apn={lk,r) €EZ°Im+ 1 <k <r <m+n+ 1}
A = ((k,r) €Z?|m —n <k <71 < m}
The corresponding elements of the group G;* are as follows

1 Xm-nm-n+1 " Xm-n,m-1 Xm-nm tm-nm+1 tm—n,m+2 " Xmenm-n+1 \
/ 0O 1 - Xm-n+1,m-1 Xm-n+im Cm-n+1m+1 tn-n+im+z " Um-ntiman+t
0 0 1 Xm-1m Cm-1m+1 tn-1m+2 " Cm-1mn+1

0 0 0 1 tmom+1 tmmz " Ummin+1
0 0 0 0 1 Xm+im+2 " Xm+im+n+1
0 0 0 0o 0o 1 - Xm+2m+n+1
\ 0 0 0 o 0 0 - Xm+n,m+n+1 /
0 O 0 0O 0 0 - 1

The induced representation of the group G/ is defined in the space L?(X,du) by the
following formula
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u(xt)

(T £) () = S(hC, >)(

where X = B(m,n)\G™ = B,,, X B(m'") (see (88)),

d.u(xm;x(m)) = dxp, ® dx™ = ®(k,n)eAm,n dxpn @ ®(k,n)eA(m'”) AXgn (127)
be the Haar measure on the group B, X B(™™ . Denote by H™" = L%(B X
B(m'"),dxm X dx(m)).
Lemma (4.2.14)[161]:Two von Neumann algebra €S and %* in the space H™" generated
respectively by the sets of unitary operators U,,-(t) and V,,.(t) coincides, where

Urr (O (x) = exp2riSy, () f (), Vier (O ) (%) 1= ex’P(Zﬂitxkr)f(ff)r
AS = (U (t) = TIthgn = exp(2miSi, (£)) |t €R,(k,7) € A(m,n)) ,

) flxt),f € L*(X,u),x € X = H\G,t €G (126)

U = (Ve () 5= exp(2mitxi) |t € R, (K1) € Ay U Amm) " (128)
Proof: Using the decomposition (see (110) and (111))
Sa) = (enlyx ™) = (x)T YT (et )T (129)

we conclude that A5 < A*. Indeed, we get V- (t) := exp(2mitx,,) € U* hence the operators
X, OF multiplication by the independent variable f(x) » x.f(x) in the space H™" are
affiliated with the von Neumann algebra 2* i.e. x;, n ¥* for (k,r) € Ay, U AWM,
Definition(4.2.15)[161]: Recall (c.f. e.g. [162]) that a non necessarily bounded self-adjoint
operator A in a Hilbert space H is said to be affiliated with a von Neumann algebra M of
operators in this Hilbert space H, if exp(itA) € M for all t € R. One then writes An M.

By (115) the matrix elements x; of the matrix x;,! € B,,, are also affiliated
X 1 Ax. Using (129) we conclude that the matrix elements Sy, € A(m, n) of the matrix
SU™ are affiliated: S,n U*, (k,7) € A(m,n),s0 AS € U,
To show that U 2 A* we find the expressions of the matrix element of the matrix x(™ €
B gnd x ;1 € By, in terms of the matrix elements of the matrix SU™ =

(Skr)kryeammy - 1O do that we connect the above decomposition Sg’” =
(x™)T yT (x;1 )T and the Gaussian decomposition C=LDU (see Theorem (4.2.34).

Let us denote by J the n x n anti-diagonal matrix /| = >3 E;p_rmars1 UsingJ 2 = I and
(113) we get

S = BT (x,y)] = (x(m)) vt )' ) = (x(m)) O NUERDTD. (130)
The latter decomposition (130) is in fact the Gauss decomposition of the matrix S/ i.e.we get
SJ] = LDU,whereL = (x™)T,D = yTJ,U = J(x;;})T]

Using the Theorem (4.2.34) we can find the matrix elements of the matrix x(m) € B(™™M and
Xm' € By, in terms of the matrix elements of the matrix S( ™) hence we can also find the
matrix elements of the matrix x,, € B, . This finish the proof of the lemma.

We give below the expressions for S,,J. For m =3 and n = 1 i.e. for G we have(remind that
J2=1)

1 0 0 s 1 0, (ys2 O L1
5, = (e )z 1)= Gy 00T 0% o)
z ( X23 1) Yaz O x451 ( X23 1) 0 a3 1 0
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1 0 (ys2 O0\(1 =x;2
52 (x23 1) ( 0 }’43> (O 1 )
For G5 we get

1 0 O\ /Yve1 O 0 Xyd xsd 1

S3 = <x12 1 0)( 0 ¥2 O > Xzg 1 0

X13 X3 1 0 0 a3 1 0O O

1 0 0\/Yer 0 0\/1 x3p x3¢

S;] = <x12 1 0)( 0 ys2 O ) 0 1 x5
X13 X3 1 0 0 w3/ \o o 1

For G3we have

1 0 0 0\ /y50 0 0 0\ /xi7 x57 xg7 1
Xor 10 0\[0 y5q 0 0 /x;gxgg 0
0
1

O

Xo2 X12 1 0 0 ys2 O xg 1 0
Xo3 X13 X3 0 0 0 Y3 1 0 0

S
N~——

(e

1 0 0 O\ /Yo 0 0 O /1 Xs7  Xgr x4_71\

Xo1 10 0[O0 ysg 0 O 0 1 =xt x3d (131)
%2 ¥12 1 0]l 0 0 ysz O \o 0o 1 x2)
Xo3 X13 Xp3 1 0 0 0 s 0 0 0 1
Theorem(4.2.16)[161]:The induced representation T™>™ of the group G, defined by
formula (126), corresponding to generic orbit 0,,, , generated by the pointyn € (gmn) *

,yn =Pn—1r=0ym+r+1,m—rEm+r+1,m—r is irreducible. Moreover the
d ,.myn

S4J =

generators of one-parameter groups Ay, = & TI+tEkr li=( are as follows
k-1 k-1
Bir = z XksDrs + D, (k» I‘) € A(m’n)'Akr = z XksDrs + Dir, (k» I‘) € Am,nr
s=m-=h s=m+1
(Zm)_l(Akr)(k,r)EA(m,n) = SY(lm) = (Skr)kreammn = (X;ll yx (m))T.

The irreducibility of the induced representation of the group G/ is based on the following
lemma.

Proof: The irreducibility follows from the Kirillov results . To give another proof of the
irreducibility of the induced representation consider the restriction T™>™ |g, »y of this

representation to the commutative subgroupB(m, n) of the group G;* . Note that

AX = (exp(Znitxkr) |t €ER,(k,7) €EApy U A(m,n))

= L®(Bpy X B™M, dx,, @ dx™).
By Lemma(4.2.14) the von Neumann algebra 25 generated by this restriction coincides
with L% (B, X B(™™ dx,, ® dx(™). Let now a bounded operator A in a Hilbert space
m, ncommute with the representation T™™. Then A commute by the above arguments with
L (Bpp X B™™M dx,, ® dx(™) , therefore the operator A itself is an operator of
multiplication by some essentially bounded functiona € L* i.e.(Af)(x) = a(x)f(x) for
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f € H™™", Since A commute with the representation T™" i.e. [A,T,”™] = Oforallt €
Bnn X BU™ we conclude that

a(x) = a(xt) (mod dx,, ® dx™) forallt € B, x B,
Since the measure dh = dx,, ® dx(™ is the Haar measure on G = B, x B™M™M, this
measure is G-right ergodic. We conclude that a(x) = const (mod dx,, ® dx™).
Regular and quasiregular representations of infinite-dimensional groups.

To define the induced representation we explain first how to define the regular
representation of infinite-dimensional group G. Since the initial group in not locally compact
there is neither Haar (invariant) measure on G (Weil, [168]), nor a G-quasi-invariant measure
(Xia Dao-Xing, [188]). We can try to find some bigger topological group G and the G-quasi-
invariant measure p on G such that G is the dense subgroup in G. In this case we define the
right or left regular representation of the group G in the space L2(G,p) if pRt ~
u (resp.pult ~ p) forall t € G as follows:

1
R, _ (du(xt) z ~

(T £)(x) = ( dm)) fae)f € 2@ )t € G, (132)

(T F)(x) = (@du(t=20/dpG) 3£ (), f € 12(G,p),¢ € G. (133)

Conjecture (4.2.17)[161]:(Ismagilov, 1985). The right regular representation TR,u: G —
U(L?(G, w))is irreducible if and only if

(i) p't L pvt € G\{e},

(i) the measure p is G-ergodic.

Analogously we can define the quasiregular representation. Namely, if H is a closed
subgroup of the group G, then on the space X = H\G = H \G the right action of the group
G is well defined, where G (resp. "H ) is some completion of the group G (resp. H). If we
have some G-right-quasi-invariant measure p on X one may define the “quasiregular
representation” of the group G in the space L#(X, u) as in a locally compact case:

(™" () = (duxt)/du(x) '/ f (xt),t € G.

The regular and quasiregular representations for general infinite-dimensional groups

were introduced and investigated in e.g. [123],[ 9], [142], [143], [146].

The induced representation In dgs of a locally-compact group is the unitary

representation of the group G associated with a unitary representation S of a subgroup H of
the group G as it was mentioned (see [163], [140]) all unitary irreducible representations up
to equivalence G, of the nilpotent group G, = B(n,R), are obtained as induced

representations Indﬁn Ugy associated with a points f € gy and the corresponding subor-

dinate subgroup H < G,. The induced representation Indfln Ugy is defined canonically in the
Hilbert space L (H\Gy, ,,).

A. Kirillov [140], Chapter I, 84, p.10 says: The method of induced representations is
not directly applicable to infinite-dimensional groups (or more precisely to a pair G D
H) with an infinite-dimensional factor H\G)”.

We develop the concept of induced representations for infinite-dimensional groups. Let
we have the infinite-dimensional group G and a unitary representation S: H — U(V ) in a

151



Hilbert space V of a subgroup H of the group G such that the factor space H\G is infinite-
dimensional.

In general, it is difficult to construct G-quasi-invariant measure on an infinite-
dimensional homogeneous space H\G. As is the case of the regular and quasiregular
representations of infinite-dimensional groups G it is reasonable to construct some G-quasi-
invariant measure on a suitable completion H\G = H \G of the initial space H\G in a certain
topology, where “H (resp. G) is some completion of the group H (resp.G). To go further we
should be able to extend the representation S: H— U(V) of the group H to the
representation S : H — U(V) of the completion H of the group H.

Finally, the induced representation of the group G associated with a unitary
representation S of a subgroup H will depend on two completions "H and "G of the subgroup
H and the group G, on an extension S : H — U(V )of the representationS: H — U(V) and
on a choice of the G-quasi-invariant measure p on an appropriate completion X = H \G of
the space H\G.

Hence the procedure of induction will not be unique but nevertheless well-defined (if a G-
quasi-invariant measure on H\G exists). So the uniquely defined induced representation
indZ S in the Hilbert space L2(H\G,V, w) (in the case of a locally-compact group G) should

be replaced by the family of induced representations IndGG”(S S) in the Hilbert spaces

L2( H\G,V, ) depending on different completions G of the group G, completions “H of the
group H and different G-quasi-invariant measures p on H \G.

Example(4.2.18)[161]:([141], [143]). Regular representations TR* of the infinite-
dimensional group G in the space L?(G, ), associated with the completion “G of the group G
and a G-right -quasi-invariant measure p on G, is a particular case of the induced
representation

TRE = [nd>®" (1d),
generated by the trivial representation S = Id of the trivial subgroup H = {e} (as in the case of
a locally compact groups).
Example(4.2.19)[161]:([123], [146]). Quasi-regular representations "X of the infinite-
dimensional group G in the space L?(X, ) where X = H\G and H is some subgroup of the
group G is a particular case of the induced representation

mRX = Inde % (1d)
generated by the trivial representation S = Id of the completion H in the group G of the
subgroup H in the group G.
Let G be an infinite-dimensional group and S: H — U(V ) be a unitary representation in a
Hilbert space V of the subgroup H c G, such that the space H\G is infinite dimensional.

We give the following definition.
Definition (4.2.20)[161]: The induced representation

In dEG M (1d)
Generated by the unitary representations S : H — U(V) of the subgroup H in the group G is

defined (similarly to (133) and (134)) as follows:
(i) We should first find some completion "H of the group H such that
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S: H- UuWw)
Is the continuous unitary representation of the group “H , such that S|y = S,
(i) Take any G-right-quasi-invariant measure p on the an appropriate completion X = H\G
of the space X = H\G, on which the group G acts from the right, where H (resp.G) is a
suitable completion of the group H (resp. G),
iii) In the space L?( X, V, ) of all vector-valued functions f on "X with values in Vsuch that

191 = [ IHGN dno) < oo,
X
define the representation of the group G by the following formula

(TH) = S (hx,0) (‘fi”((’“))) f(xt),x €X,t € G, (134)

where h is defined by

()t = h(x t)3(xt).
The section s : H — G of the projection p : G — H should be extended to the appropriate
sections: H — G of the extended projectionp: G — H.
The comparison of the induced representation for locally compact group and the above
definition for infinite-dimensional groups may be given in the following table:

1 G Gloc.comp DimG = oo
2 H HcG HcG
3 |S S:H - U(V) S:H->UWV)=S:H - UWV)
4 X X=H/G X=H/G=H/G
5 |H L2(X = H\G,V, 1) L2(X = H\G,V, 1)
6 |Ind ,ndgs IndS %G, )
7 Ty | (Tef)(x) \ (Tef)(x) \

d 1\2 1\2

= 5(h(x,0) ( dl;%(t))) Fxt) | = S(h(x t))( uix ))) .

8 |p P:G - X P:G > X
9 s s:X—>G S:H\G > G=35:H\G -G
10 | h(x,t) s(x)t = h(x,t)s(xt) S(x)t = h(x,t)5(xt)
Table (1)[161]:

How to develop the orbit method for infinite-dimensional “nilpotent” group B) and BZ ? We
would like to develop the orbit method for infinite-dimensional“nilpotent” group G =
lim G,, with G, = B(n,R). The corresponding Lie algebra g* is the inductive limit g =
—n

lim b,, of upper triangular matrices, so as the linear space it is isomorphic to the space Ry’ of
—n

finite sequences (xj)xen hence the dual space gx is isomorphic to the space R of all
sequences (xj)xen but the latter space R™ is too large to manage with it, for example to
equip with a Hilbert structure or to describe all orbits.
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To make it less it is reasonable to increase the initial group G or to make completion G of this
group in some stronger topology.

To develop the orbit method for groups BY' and BZ we should answer some questions:

(a) How to define the appropriate completion G of the group G, corresponding Lie

algebras g (resp. §) and corresponding dual spaces g* (resp. §*)?

(b) Which pairing should we use between g and g*?

(c) Let the dual space g*, some element f € g* and corresponding algebra h, subordinate to

the element f, are chosen. How to define the corresponding induced representation Indg Ur

and study its irreducibility ?
(d) Shall we get all irreducible representations of the corresponding groups, using
induced representations?
(e) Find the criteria of irreducibility and equivalence of induced representations.
The problem of completion of the inductive limit group ¢ = lirrrll G,,, where Gn are

finite-dimensional classical groups were studied by A. Kirillov ([164], 1972) for the group
U(0) = ¢ = limU(n) and G. Olshanski1([185], 1990) for inductive limit of classical
-n

groups. They described all unitary irreducible representations of the corresponding groups
G = lim G,,, continuous in stronger topology, namely in the strong operator topology. The
-n

description of the dual G of the initial group G = lim G,is much more complicated.
- n
In [165] we have constructed for the group GLy(2%,R) = lim GL(2n — 1,R) a
-n

family of the Hilbert-Lie groups GL,(a),a € 2 such that

(@) GLy(20,R) © GL,(a)and GLy(200,R)isdense in GL,(a) foralla € ¥,

(b) GLo(20, R) = Ngea GLz (),

(c) any continuous representation of the group GLy(290,R) is in fact continuous in some
stronger topology, namely in a topology of a suitable Hilbert -Lie group GL,(a).

(i) Therefore, as we show it is sufficient to consider a Hilbert-Lie completions B, (a) of the
initial group BZ .

(if) In this case the pairing between the corresponding Hilbert-Lie algebra b2(a) and its dual
B, (a)* is correctly defined by the trace (as in the finite-dimensional case).

(1) We define the induced representations of the group BZ corresponding to a special orbits,
generic orbits, using schema given We consider only the simplest example of G—quasi-
invariant measures on X = H \ G, namely the infinite product of one-dimensional Gaussian
measures.

(1) How to construct the induced representation corresponding to an arbitrary orbit?

Conjecture(4.2.21)[161]:Two induced representations Indg;u1 Ug, n, and Ind:f'z’Hszz,H2

are equivalent if and only if the corresponding measures u, and p, are equivalent and the
functionals f; and f, belong to the same orbit of (g)*.

GL,(a). We show that the Hilbert-Lie groups appear naturally in the representation theory of
infinite-dimensional matrix group. The remarkable fact is that for the inductive limit G =
l—igl G,of matrix groups G,, € GL(2n — 1,R) it is sufficient to consider only the Hilbert

completions of the initial group G and of the spaces H\G.
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Let us consider the group GLy(20,R) =IlimGL (2n — 1,R) with respect to the
—n

symmetric embedding n: Gy Gy, Gp 3 x> x +E__+ E, €
Gn+1, Where G, = GL(2n — 1,R). We consider here only the real matrices.

The Hilbert-Lie group GL,(a) we define (see [165]) by its Hilbert-Lie algebra gl,(a) with
composition [x,y] = xy - yx

9@ = (x = ) XinFin | 1512000y = ) | ¥em |2 i < 200 € Ugy 6L (@)
knez knezZ
={+x|U+x)1T=1+yxy € gl(a)}
To be more precise, let us consider an analogue o, (a) of the algebra of the Hilbert-Schmidt
operators o, (H) in a Hilbert space H:

52(@) = (8 = ) enin | Ixyay = Y [ in ¥ e < 0,
knezZ knezZ
Lemma(4.2.22)[161]: ([165]). The Hilbert space a,(a)is an (associative) Hilbert algebra (i.e.

lxyll < Clixllllyll,x,y € o,(a)) if and only if the weight a = (an) x nyez2 belongs to the
set A, defined as follows:

e, ={a = (@) wknezz 10 < Ak < Cagmmpn, k,n,m €Z,C > 0} (135)
We define the Hilbert-Lie algebra gl,(a) as the Hilbert space o,(a) with an operation
[x,y] = xy — yx.

Corollary (4.2.23)[161]:The Hilbert space gl,(a) is a Hilbert-Lie algebra if and only if the
weight a = (agn) (x,n)ezzbelongs to the set A, .
We remark also [179] that GLy (200, R) = Ngey,, GL,(a).
Theorem(4.2.24)[161]:(Theorem 6.1 [165]). Every continuous unitary representation U of
the group GLy(2o0,R) in a Hilbert space H can be extended by continuity to a unitary
representation U,(a) : GL,(a) — U(H) of some Hilbert-Lie group GL,(a) depending on
the representation.

Hilbert-Lie groups B,(a). Let us consider the following Hilbert-Lie group B,(a) :=
B3 (a)

By(a) = {I + x|x € by(a)}, (136)

where the corresponding Hilbert-Lie algebra b, (a) := b% (a) is defined as

h@=0= ) ZFnlw= ) %l G < ©.(037)
(k,n)€EZ2 k<n (k,n)€Z2 k<n
Lemma(4.2.25)[161]: ([165]). The Hilbert space b, (a) (with an operation (x,y) +~ xy)isa
Banach algebra if and only if the weight a = (ayp) x n)ez2 Satisfies the conditions
a = (Axn)k<n Un < Camamn, K<m < n,km,n€Z (138)

Denote by U the set of all weight a satisfying the mentioned condition.
Take the group BZ , fix some its Hilbert completion i.e. a Hilbert-Lie group B2(a), a € A and
the corresponding Hilbert-Lie algebra g = b, (a). The corresponding dual space g* =
b; (a) has the form

i@ == ) Vi 1l = D VP ai < 0}.(139)
(k,n)ELZ k>n 2 (k,n)ELZ k>N
The adjoint action B,(a) — Aut(b,(a)) of the group B,(a) on its Lie algebra b, (a) is:
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b,(a) 3 x - Ad,(x):= txt™! € by(a),t € B,(a). (140)
The pairing between g = b,(a) and g* = b;(a) is correctly defined by the trace:

gXg3@NP @)= )= D Gy ER (141
(k,n)EZ2,k>n
The coadjoint action of the group B,(a) on the dual g* = b3;(a)tog = by(a) is as
follows: fort € B,(x)and y € b; (a)

t=1+ 2 tknEkn»y = Z tknEknft_1 =1+ z t’;%Ekn

(k,n)EZ2,k<n (k,n)€EZ2,k<n (k,n)€Z2 k<n
we have
q q oo
(t_lyt)pq = Z (t_1Y)pmtmq = 2 ztp_)rl Yrmtmg (p,q) € szp > q,

m=-—oo m=-—oco r=p

hence
q
Ady() = (Y- = T+ ) ('Y)pqFpa - (142)
m=—oco

We consider four different type of orbits with respect to the coadjoint action of the group
B, (a) in the dual space b;(a).

Case (1) The finite-dimensional orbits corresponding to a finite points
Ykenyerz k<n YiknExn € by(a) (finiteness of y means that only finite number of
Yikn arenonzero). This orbits leads to the induced representations of an appropriate
finitedimensional groups G;*,m € Z,n € N defined by (125). All irreducible unitary
representations of the groups G,* are completely described by the Kirillov orbit method hence

the finite-dimensional orbits gives us the set Upey GI* © BZ for embedding GI* c G™,).
Case (2) 0-dimensional orbits are of the form:

Oy = ¥,y € by(a),y = Zyk+1,kEk+1,k-
keZ
The Lie algebra b, (a) is subordinate to the functional y, (y, [b,(a), b,(a)]) = 0 since

[bo(@,by(@] = {x € by@|x = > xinFin}
(k,n)€Z2,k<n
The one-dimensional representation of the Lie algebra b, (a)are

by(a) 3 x » (y,x) = Zxk,k+1yk+1,k € R.
keZ
Corresponding one-dimensional representations of the group B, (a) are as follows:

B,(a) exp(x) = exp(2mi({y, x))) = exp <Z7Tizxk,k+1yk+1,k> €St (143)
k€EZ
They are all irreducible and nonequivalent for different Y xcz Vi+1 xEx+1x € bs(a).

Case (3) Generic orbit is generated for an arbitrary m € Z by a pointy € b,(a)

y= Ym+p+1im-pEm+prim-p € b;(a), with Ymiprim—p = 0,p + 1 €N, (144)
p=0
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are devoted to the study of this case.
Case (4) General orbits generated by an arbitrary non finite points

Y= D VinFun €b3(@.
(kn)EZk>n

Construction of the induced representations of the group BZ corresponding to a generic
orbits. Consider more carefully the case (3). The irreducibility we shall study in the
following. Take as before the group Bg , fix some its Hilbert completion i.e. a Hilbert-Lie
group B,(a),a € U, the corresponding Hilbert-Lie algebra g = b,(a) and its dual g* =
b;(a).
We shall write the analog of the induced representation of the group BZ for generic orbits
(see Examples (4.2.6) , (4.2.7) and(4.2.13)) corresponding to the point y € b;(a) defined by
(210) following steps 1)-3) of Definition (4.2.20).
Step 1) Extension of the representation S: H — U(V ). For fixed m € Z, consider the
decomposition BZ = B,,B(m)B similar to the decomposition (103), where B%Z =

{I + Xnezk<n XenEien },

B = I+ ) MurBulBom) = I+ ) mgrEy}B™
(k,r)EAS, (k,r)EA,
= {I + z My TErr -
(kr)eEA,
A= {(k,r) €Z°|m+ 1< k <71},A(m) = {(k,v) € Z?|k < m < r},and A™
= {(k,7) € Z*|k < r < m}

Since the algebras hy(m), m € Z defined as follows ho(m) = {t — I |t € B,(m)}where
B,(m) = B(m) N B% , are commutative, so (y,[ho(m),hy(m)]) = 0, hence they are
subordinate to the functional y € g* = b;(a). The corresponding one-dimensional
representation of the algebra hq(m) = ho(m) N gZis

ho(m) 3 x — (y,x) = zxm—p,m+p+1ym+p+1,m—p €R.
p=0

The unitary representation of the corresponding group H,(m) is

Hy(m) 3 exp(x) » S(exp(x)) = exp(2mi(y,x)) € S
This representation can be extended to representation of the corresponding Hilbert-Lie group
H = H,(m,a) = B(m) N B,(a) (we note thatt = exp(t — 1)):

H,(m,a) 3 exp(x) — S(exp(x)) = exp(2mi(y,x)) € St
In what follows we shall use a notation B, (m, a) for the group H,(m, a).
Step 2 a) Construction of the completion X = H \G of the space X = H\G. It is difficult to
construct an appropriate measure on the space X,,, o = Bo(m)\BJ since it is isomorphic to
the space R’ < Ry . That is why we consider two homogeneous spaces, an appropriate
completions of the space X, o:
Xm,z(a) = Bm,z(a)\BZ(a)'Xm = B(m)\BZ'

Since the decompositions holds

B%L = B, ,Bo(m)B{™ ,B,(a) = Bp,(a)B,(m,a)B{™ (a),B% = B,,B(m)B™,
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(see Remark(4.2.8)), we have the following inclusions: X,,, € X,,.(a) © X,,, where
Xmo = Bpmo X B{™ , Xpm2(a) = Bp,(a) x BM™ (a),X,, = B(m)\B% = B,, x B™,
Step 2 b) We construct a measure u,;, on the space X, with support X,,, ,(a) i.e. such that
Uy (Xmo(a)) = 1. Thatiswetake X = H\G = B,(m,a)\B;(a).

We construct the measure p, on the space X,, = B,, x B(™ as a product-measure p, =
Upm @ ”l()m) , where pp, , (resp.® #l()m) ) is Gaussian product measure on the group
B,,, (resp. B(™)) defined as follows:

/bk
dub,(m)f (Xm) :®(k,n)eAmdubkn(xkn): ®(k,n)EAm ?n GXP(—ban;%n AdXyn, (145)

(m) —
dﬂb , (x(m)) _®(k,n)EA(m)dﬂbkn(xkn)

/bk
= ®(k,n)eA(m)dubkn(xkn) ?n exp(—bknx,ﬁn dXyn. (146)

The corresponding Hilbert space is
H™ = 2KXmup) = Lo(Bn X B™, ppm @ ).
Lemma(4.2.26)[161]:(Kolmogorov’s ~ zero-one law, [159]). We have p,., ®
w™ (B,,(@) x B\™ (a)) =1 ifand only if
z Agn
ben

(km)eh(myuaim K"
Lemma(4.2.27)[161]:([141], [142]). The measure p, = fpm ® po™ is B o x BI™ -
right-quasi-invariant i.e. ()Rt ~ ub forallt € B, X Bém) if and only if

Skn,ub)—zb < oo forallk < n < m.

rr=—00

Step 3) The corresponding induced representation of the group BZwe defined as follows:

(Ttm,y f)(X) — S(h( )( Mb( )

) f(xt),x € m,, t € G,(147)

where (see (152))

S(h(x, t)) = exp(2miy,h(x,t) — 1)) = exp(2mitr ((t — DB(x,y))).
Consider the induced representation T™ of the group BZcorresponding to a generic orbit 0y,
generated by the point

¥ =) YmsrsrmerE mirsimor €bj (@defined by(147).Set for (k,r) € A(m)

Sier (tir): = (¥, (h(x, Exr (tir)) — 1)),
then

d
Agr =aexp(2ni5kr(t))|t:0 = 2miS,,-(1). (148)

158



Let us denote by s(™ = s the following matrix (compare with (107) and (108)):
S = (Skr)(k,r)eA(m):Where Sir = Sr(1). (149)
We calculate now the matrix S(t) = (Sir(tkr))kryeaeny and the matrix s =
(Skr (1) (k,ryeacmy Using analog of the Lemma (4.2.10). As in (106) we have
(v, h(x,t) — I) = tr (H(x, t)y) = tr(x™toxyt) = tr(texylyx™) = tr (t,B(x,¥)),
where t, = t — I and for x,,, € B,,,x™ € B we denote
s st = (4 L)(0 ()= B)aso
By definition we have (recall that Ey,,(txn) = [ + tinExn)
Sin(tien) = ¥, (A(X, Exn(tin)) — D) = tr(tgnExnB (X, ¥)),
hence by analog of the Lemma (4.2.10)we conclude that
S = (Sin(Wr = @r ErBxY))) iy = BT (1y) = (x(m)"y " (xr" )7
— (0 (xm)" y T (x! )T).(ISI)
So, we have ’ °

(S(h(x, 1)) = exp2mi(y, (h(x,t) — D)) = expmitr ((t — DB(x,y))).(152)
Using results of [166] we conclude that the following lemma holds.

Lemma(4.2.28)[161]: The measure p, = fpm & u(bm) is B, o x B{™ -right-ergodic if
SR
E(Mb) — z kn(:ub)< 0

b
k<nsm kn

Lemma(4.2.29)[161]: Two von Neumann algebra 25 and 2~ in the space H™ = L?(X,,, Up)
generated respectively by the sets of unitary operators Uy, (t) and V,,.(t)coincides, where
Uir ) (x) = exp(2miSy (1)) f (x), Vir () f) () := exp(2mitxy,)f (x),
A = Uy, (t) = Y}T’t{,kr = exp(2miS(t)) |t €R, (k,7) € A(Mm)”,

w = (Ve (0) = exp(2mitn) |t R, (k1) € AmUA<m>) | (153)
Proof. Using the decomposition (151)
st™ = B(x,y)" = (xz' yx™)T = (x™)TyT (x")T
we conclude that 2A° < A* (see the proof of Lemma (4.2.14)).
To show that A° < A¥ it is sufficient to find the expressions of the matrix element of the
matrix x™ € B and x,;' € B,, in terms of the matrix elements of the matrix s(™ =
(Skr) (kryeaqm)- TO do this we connect the above decomposition s(™ = B(x,y)T (see (150))
and the Gauss decomposition € = LDU for infinite matrices (see Theorem(4.2.35) . By
(150) we get B(x,y) = x,,' yx™,
To find a matrix connected with the matrix s(™ , for which an appropriate
decomposition LDU holds we recall the expressions for B(x,y) for small n and finite-
dimensional groups G;™* (see Example (4.2.13)). We note that J2, = I, where

Jm € Mat(OO, R)»]m = z Em+r+1,m—r-
TEZL

For G3 we get
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B(x,y) = xzl yxm

/1 Xys Xig Xa7 \ 0 0 0 a3\ /1 Xo1 Xo2 xp3
\0 0 1 x5 / 0 Y1 0 0 fJlO 0 1 X))
0 0 0 1 Y7o 0 O 0 0 0 O 1
/ 1 x;sl x;61 by 4_71 \ Va3 0 0 0 1 0 0 0
~ 10 1 x X57 0 Ys2 0 0 X23 1 0 0
B(x,y)] 0 56 "o 0y, o lme x 1 o (154)
0 1 Xe7
O 0 0 1 0 0 0 y70 x03 xOZ xOl 1

We use the infinite-dimensional analog of the latter presentation, i.e. instead of the group
G, = B(n,R) consider the infinite-dimensional group BZ and do the same. Let
xm € Bm,x(m) € B(m),y =Xoor=0ym+r+1lm—-rEm+r+1m-—r
€ g*2(a)
and ] = J,n = Erez Emarsimer- Thenwe get ST = B(x,y) = x;t yx™.
SetC = C(x,y) = B(x,y)] then C = UDL, more precisely we have:
B(x,y)] = %' YJmJmx"™ ] = UDL,

whereU = x;',D = yJ,,,L = J,x™] ., (155)
C = B(x,y)]
/1 Xys Xie Xi7 Yaz 0 O 0 1 0 0 0
10 1 xg& X7 0 ¥s2 0 0 X231 0 0
\0 0 1 x5 0 0 ye1 O X3 X2 10
0 00 1 0 0 0 Yoo Xo3 Yoz Xo1 1
c11 €12 Cin
/C21 C22 Can \‘
C =
\Cnl Cno Con, /
1 u12 C1n =\ /dy e 0 e 1 o - 0
0 Con =+ 0 d, =+ 0 - Ly 1 = 0 -
Con 0 0o dn lnl an O TET
o finish the proof of the Lemma it is sufficient to find the decomposmon (156)

UDL .
Let us suppose that we can find the inverse matrix C~1. Then by (155) holds ¢ ~! =
L71D~ty~1 and we can use Theorem( 4.2.35) to find
L™ = ]m(x(m)) - 1](m):D_1 =¥ Jm U™ = xp.
Hence, we can find the matrix elements of the matrix (x(m))~* € B™ and x,, € B, in
terms of the matrix elements of the matrix C™* = (ST )~ = (B(x,y)J)~!. Finally, we can
also find the matrix elements of the matrix x™ € B using formulas (181). This finish the
proof of the lemma since in this case we have x,, n%° for (k,r) € A,, UA) . Hence A5 <
A*
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(i) To find the inverse matrix C~1 we write two decompositions:
C = L,D,U; = UDL,C™' = (U)™Y(D)™*'(L1™) = L™'D~WU~t. (157)
(if) Using (157) we can find L, D; and U, by Theorem (4.2.35) . More precisely, for all
x € T, where
e = {x € By x B™ | M7 (C(x)) # 0,k € N}
holds the decomposition C(x) = L,D,U; and the matrix elements of the matrix L,, D;and U,
are rational functions in ¢, (x).
(iii) We can find (L,)~* and (U;)~? using formulas (114). Note that J,,,L/,,,, U, and
JmL ™ m, U™ € By(a).
(iv) Using identity (157) we can calculate C~* = (U;)"*(D,)"*(L,)7%, since L7, D~ ! and
U~1 are well defined.
(v) Using equality (157) we can find the decomposition C™1 = L™1D~1U~! of the matrix
C~! by Theorem (4.2.35)In other words, the decompositions holds ™ = L™1D~1u~1for all
€ I';_,,where
[co1= {x € By x B | M3 (C7'(x)) # 0,k € N}

and the matrix elements of the matrix L™1,D~1 and U~ are rational functions in matrix
elements ¢ (x) of the matrixC 1.

Let us denote (L) ™ = (Likn)en (D)™ = diag(diik and (U™ = (Ugkn)en.
The decompositions ¢ = L;D,U; and €™ = (U) YD)t x (L) hold forx € T, N
[._,, i.e. almost for all x € B,, x B™ with respect to the measure uy, since u,(T; N
[c_1) = 1. We conclude that the convergence

ot () = ) Uikl L kon € N
meN
holds pointwise almost everywhere x € B,, x B (mod p,). Since Ug gy, dia, and
L1 n U by (ii) and (iii), we conclude by Lemma (4.2.34) that cj,; (x) n 5. This finish the
proof of the lemma.
Theorem(4.2.30)[161]:The induced representation T™Y of the group BZ defined by formula
(213), corresponding to generic orbit O, , generated by the point y =

Yo Ymir+1im-rEm+r+im—r € by (@) is irreducible if the measure uy,, & u,()m) on the

group B,, x B™) is right Bno X Bf)m) -ergodic. Moreover the generators of one-parameter

_ 4 rmy
groups A yr = — Ty, . |¢=o are as follows
— - — k-1
A kr — éczlooxksDrs + Dkri (k, 1”) € A(m):Akr - s=m+1 xksDrs + Dkr' (k,?‘) €

A,

~_ _ T
2ri) ™ (A deryeaemy = S™ = Sirdkryeaemy = (Xt yx™ ).
Here we denote by D,,, = D, () the operator of the partial derivative corresponding to the
shift x = x + tE,,, and the measure p;, on the group B,, X B™ 3 x = I + Y x4, Exy:
1

d (d Eo)\2
Oun)0) = 55 (2T ) £+ ) o D)
0
= OXRn — bknxkn. (158)

161



The irreducibility of the induced representation of the group BZ follows from the following
lemma.

Proof: To show the irreducibility of the induced representation consider the restriction
T™Y | g (my Of this representation to the commutative subgroup B, (m) of the group BZ . Note
that

A* = (exp(Znitxkr) |t € R, (k,7) € AmUA(m)) = LBy, X B,y ® yl(,m) ).
By Lemma (4.2.29) the von Neumann algebra 2° generated by this restriction coincides with

A* = L*(B,, X B(m),ub,m X #l()m))_ Let now a bounded operator A in the Hilbert space
H™ commute with the representation T™Y. Then A commute by the above arguments with

L°(Bp X B™,u @ upm yl()m)), therefore the operator A itself is an operator of
multiplication by some essentially bounded functiona € L* i.e.(Af)(x) = a(x)f(x) for
f € H™. Since A commute with the representation T™ i.e.[4,T/"”] = 0 for all €

Bpo X B{™ | where B,,o = By, N BZand B™ = B™ n BE | we conclude that
a(x) = a(xt) (mod ., ® ™ ) forallt € By, x BI™.
Since the measure pp ., ® #lgm) on the group B,, x B isright B,,, X Bém) -ergodic we

conclude that a(x) = const (mod dx,, ® dx™),
First steps. Let G be the dual of the group G. Our aim is to describe G for G = lim G,, where
—n

G, = B(n,R) is the group of all n X n upper triangular real matrices with units on the
principal diagonal, i.e. we would like to describe the dual of the group By of infinite in one
direction and BZinfinite in both directions matrices. Consider the inductive limit G =
li,“,} G,, of nilpotent groups G,, = B(n,R). The symmetric (resp. nonsymmetric) imbedding

gives us two infinite-dimensional analog of “nilpotent” groups BZ (resp. BY).
We do not know the description of all G. We only know that the set G contains the following
three classes of representations.
(i) The set G contains U,, G,, i.e.G > U, G,,. One may use Kirillov’s orbit method
[163], [140] to describe G,,. The embedding G,, ¢ G, is described in Remark (4.2.31).
(i) We have G\ U, G, # ©. Namely G \ U,, G, contains “regular” T®* and “quasiregular”
mRHX representations of the group G.
(iii) Induced representations

It is natural together with the group BY (resp. BZ ) consider all Hilbert-Lie completion
BY (a) (resp. BZ (a)) and the group of all upper-triangular matrices BN (resp. B%)

G, - BY - BY(a) » BN - G,.
GM" - BY - BZ(a) » B - G™.

Together with all imbedding and projections of all mentioned groups G,, = B(n, R) we have:

B(n, R)‘r’ilB(n +1, R)lioB(’}‘ — B,(a) » BN - B(n + 1,R) ;iﬂ B(n, R),

where the imbedding i#*** and the projections P, ; are defined as follows:
B(n,R) 3 x » i (x) = x + Epy1ne1 € B(n + LR),
B(n + 1,R) 3 x = x™x, » pl'., (x) = x, € B(n,R),
where x™** =T + Yk=1%kn+1Erns1 »Xn = I + Xisk<msn XkmErm -
162



smmn

For groups G;* = B(2n,R) defined by (125) consider the homomorphism p,. 7" : G/ =
G defined as follows (for simplicity we define p,>"form = 0)
Gl1 D x = xMlxx® B pi¥(x) = x, € G2,

where
n+1 __ —
xT =1+ E xhn+1Ehn+1'x2 =1+ E x—mkE—nk-

—-n<k<n+1 -n<ksn+1

Remark(4.3.31)[161]: The embedding B(n R)7 -\ B(n + 1L,R) (resp. GI* ~ G™,) is
induced by the homomorphism (125) pn.; : B(n+ 1,R) 7 - B(n,R) (resp. by the

homomorphism (206) ;7" ¢ Gy — GI*). So for m € Z we get Uy, ey Gﬁm) c 1§;Z :
Similarly, we have U,ey B(/n,\N) c Bg‘

Let us denote by B2 (a) (resp. BZ(a) ) the completion of the subgroup BY c
GLy(2%,R)(resp.BL c GLO(Zoo R)) in the Hilbert-Lie group GL,(a). Since (see [165])

Bo = Bgl(a) (resp. Bo = Bz (a))
aeYU aeYU
we conclude that
By = | | BY (@) (resp.B} = |_| BJ(@)).
aeU aeU

It leaves to describe BF—(E) (resp. B?(\a)) for all a € A. The problem of developing the orbit
method for the Hilbert-Lie group BY(a) (resp. BZ(a)) could be easier, since the
corresponding Lie algebra bY (a) (resp. b%(a)) is a Hilbert-Lie algebra, the dual (bY(a))*
(resp. (b% (a))*) and the pairing between BZ (a) (resp. BZ(a)) and (bY (a))* (resp.
(b% (a))*) are well defined
Using (206) we conclude

BE =1£L_r¥1B(n,]R%),B§I = lignBé“ (a),BN = lrilrzng(n,]R%),

BY 5 BN(a) o BV (159)
finally we conclude that

B = JoF@. =G = Jsamm. (160)

o ) ae neN neN
The similar relations holds also for groups BZ < B% (a) c BZ.

Definition(4.2.32)[161]: We call the representation of the group G =limG,, local if it
- Nn

depends only on the elements of the subgroup G,, for some fixedn € N.
The last relation in (159) and (160) we can reformulated as follows:
Theorem(4.2.33)[161]:  (V.L. Ostrovsky, PhD dissertation, 1986). The class of all

irreducible unitary local representations of the group BYY = lim B(n, R) coincides with the
-n

class U,, G,,
Gauss decomposition of n X n matrices. We need some decomposition of the matrix C €

Mat(n, C). Let us denote by
]‘11;51 )1<i<.<ip<nl<j<..<j,<n
the minors of the matrix C Wlth i1,ip,...,1 rows and jy, j,, ..., j, columns.
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Theorem (4.2.34)[161]:(Gauss decomposition, [133]). A matrix C € Mat(n, C) admits the
following decomposition C = LDU (Gauss decomposition),

€13 C12 " Cpp
C21 C22 '+ Cpp
Cpn1  Cn2 Chn
1 0 - 0 d 0 - 0 1 ce Ugp
_ 121 1 0 0 dz 0 0 1 ©+ Upp (161)
lpi ey - 1/\0 0 - d,/\O 0 - 1

where L (resp. U) is lower (resp. upper) triangular matrix and D a diagonal matrix if and only
if all principal minors of the matrix C are different from zeros i.e. Mllzz,'j (€) #0,1 < k <
n. Moreover the matrix elements of the matrices L, U and D are given by the formulas (see
[133])

el () Myt % (€)
Ik = — 3 Ykm = 1ot 1 S k <m < n, (162)
My () My e (©)
1122 """ K (C)
d,= M] (0),dy = i1y 2 S k< n(163)
12 ..... k—1 (C)

Proof: If we write L”1C = DU, we get
,2,.,K—1,k 2, K=1K 1 — ,2,.,K—1,k
My (€ = Mgl (L0 = Myt (DU) = dy ... dy,
this implies (163). Moreover, we get also

1,2 k=1K /1 =1 wal 2o k—1K _ 12..k-1k _
My im0 = My (€@ = Myy i m(DU) = dy ... dglgm, k < m,

this implies the second formula in (162). Similarly if we write CU™! = LD we get
1,2,..,k—1,m

MiZiCie (CU™) = Mpi i (©) = Mygiliie (LD) = d o didmiok < m,
this implies the first formula in (162).
Let us consider the infinite matrix C,L,D,U € Mat(oo, C).
Theorem(4.2.35)[161]:(Gauss decomposition C = LDU). A matrix C € Mat(oo, C) admits

the following decomposition C = LDU (Gauss decomposition),

c11 €12 ° Cin
Cpq C22 = Cop
Ch1 Cn2 Cnn

1 0O - 0 d 0 - 0 - 1 Uiz -+ Up -

154 1 - 0 0 d, =« 0 - 0 1 - uy, e
\lnl 1n2 o 1 .../\0 0 cee dn .../ \0 0 cee 1 .../

where L (resp. U) is lower (resp. upper) triangular matrix and D a diagonal matrix of infinite

order if and only if all principal minors of the matrix C are different from zeros i.e.
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Mllzz,'j (C) #,k € N. Moreover the matrix elements of the matrices L, U and D are given
by the same formulas as in the Theorem (4.2.34):

1.2,..k-1,m 1,2, k—1k
T M5 e (0) M im ()
mk = A2 k-1k Uem = T k-1k km € Nk <m, (165)
My -1k (©) M -1k
L2k
M5 (€)

dl = M%(C)ldk -

12 ..... kl()kEN’k>1' (166)

1 2,... k-1
Proof: The proof repeat word by word the proof of the Theorem(4.2.34) .

Let (X,F,u) be a measurable space, with a finte measure u(X) < oo, where F is a sigma-
algebra. Consider the set (f,) = (f,,)nen Of measurable real valued functions on X i.e. f;, :
X +— R. Denote by B(H) the von Neumann algebra of all bounded operators in the Hilbert
space H = L%(X,u) and let AU™ (e B(H)) be a von Neumann algebra generated by
operators U, (t) of multiplication by functions exp(itf,,(x)),n € N

AW = (U, (t) = e/» |n €N,t € R) .
We are interesting in the following question. Let f, — f asn — oo in some sense.
When U(t) = ety € AU forallt € R?
Since AU is a von Neumann algebra it is sufficient to find when the strong convergence of
the unitary operators in the space H holds i.e. s. li%n U,(t) = U(t), where the operators

U,(t),n € Nand U(t) are defined as follows

(Un(®)9)(x) = e"mPg(x), UM g(x) = e® g(x),g € L*(X,1),t ER.
Lemma (4.2.36)[161]: Let f,, —» fasn — oo pointwise almost everywhere, then s.

limU,(t) = U(t) henceU(t) = et/ € AU
n
Proof: For g € H we get

|mmo—Ummw=ijM@—dmewaw>

X

= [1etneme - 1Pl g6 P2duc)

=jﬁwM@—1mm@uny+o

X
asn — oo, if a,(x) := f,(x) — f(x) = 0 pointwise almost everywhere by Lebesgue’s
dominated convergence theorem.
Corollary (4.2.37)[260]: Let £, — f™ asn — oo pointwise almost everywhere, then s.
lim U (¢) = U™(t) hence X, U™(8) = eltf™ e U,

Proof: For g € H we get
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Z (U™ — Um(t))gllz — j z |(eitfﬁn(x) — eitfm(x))g(x) | Zd,u(x)

= [ D jernreme 12 g Paduo
m

X

= [ 3 fetnt — 1121 g P du@) - 0
X m

asn = oo, ifa,(x) := fi*(x) — f™(x) — 0 pointwise almost everywhere by Lebesgue’s
dominated convergence theorem.

166



Chapter 5
Some Problems and Baire Measurability with Borel Structures

We concern the Borel structures in C(K) generated by the norm, weak or pointwise
topology in C(K). We give an example of a compact space K such that the weak and the
pointwise topology generate different Borel structures in C(K). We discuss the coincidence
of the Baire o -algebras on C(K) associated to the weak and point wise convergence
topologies. (B»). We show that the Borel structures in C ( s« ) generated by the weak and the
pointwise topology are also different. We also show that in C (»*) where o = Bw/wthere is
no countable family of pointwise Borel sets separating functions from C (o).

Section (5.1): Borel Structures in Function Space

Given a space C(K) of continuous real-valued functions on a compact space K, we
shall consider thefollowing four g-algebras in C(K): the cylindrical c-algebra Cyl(C(K)), i.e.,
the smallest -algebra, for which all functionals from the dual space C(K)* are measurable,
cf. [177], [193], and the o-algebras Borel (C(K), norm), Borel(C(K), weak), Borel(C(K),
pointwise) of Borel sets in C(K) with respectto the uniform topology, the weak topology, or
the pointwise topology in C(K), respectively.

We shall discuss two topics. The first one concerns the problem which separable
compact spaces Khave the property that the measurable space (C(K), Cyl(C(K))) is a standard
Borel space, i.e., there is abijection of C(K) onto the irrationals w® taking the elements of
Cyl(C(K)) to Borel sets in w® and viceversa.

There is a conjecture that, among separable compact spaces K, this property of C(K)
characterizes exactly the compacta which can be embedded in the space B, (w®) of the first
Baire class functions on the Cantor set, equipped with the pointwise topology.

Using recent results of Dodos [172] one can show that, indeed, for all separable
compactaK < B, (2%),the measurable space (C(K), Cyl(C(K))) is standard, cf. [185].

As showd in [185], the conjecture is true for separable compact spaces whose subspace
of accumulation points has exactly one non-isolated point.

We confirm also the conjecture in the class of separable linearly ordered compact
spaces.

The second topic concerns the relations between the Borel structures in C(K)
generatedby the uniform topology, the weak topology or the topology of pointwise
convergence. This subject was originated in Edgar [174], [175]. Talagrand [69], answering a
question from [174], showd that Borel(C(Sw),norm) # Borel(C(fw),weak). We shall
show that if C(K) is a function space representation of the algebra L™ determined by the
Lebesgue measure A on [0, 1], cf. [171], [191] (anequivalent description of K is that K is the
Stone space of the measure algebra associated with A, cf. [179]), then the inclusions between
any of the three Borel structures inC(K) are strict.

We did not find similar results, cf. [190], [177]. It is also not clear to us if C(Bw) has
this property.

We shall denote by B, (M) the space of real-valued first Baire class functions on a
separable metrizable space M, equipped with the topology of pointwise convergence.
Rosenthal compacta are compact spaces which can be embedded in B, (w®), cf [178]. Let us
recallan important characterization of separable Rosenthal compacta due to Godefroy,
introducing first somenotation.
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Let K be a separable compact space. For each countable set D dense in K, we consider

Co(K) ={fID: f € C(K)} c R, (1)

I.e., the set of restrictions of continuous functions on Kto D, which is a subspace of the

countable productof the real line. The space C,(K) can be identified with the topological
space (C(K),Tp), where T}, isthe topology of pointwise convergence on D.

Now, a separable compact space K is a Rosenthal compactum if, and only if, for any
countable set Ddense in K, the set C, (K) is analytic, cf. [178].

We should mention that there are separable compact subspaces of B; (w®), which do
not embed inB;(2%),, cf. [189]. There are even linearly orderable spaces with such
properties, see Example (5.1.6).

Following [178], let us check that for a separable compact space K, the measurable
space (C(K),Cyl(C(K))) is standard if, and only if, for each countable set D dense in K, Cp
(K) is a Borel set in R? cf. [178].

Indeed, if D is a countable, dense set in K, under the restriction map C(K) — RP the
preimagesof Borel sets belong to Cyl(C(K)), hence if (C(K), Cyl(C(K))) is standard, so is
the measurable space(Cp(K), Borel(Cp(K),))), cf. (1), and therefore, (Cp(K), is a Borel set
in R?, cf. [82].

Conversely, if for each countable set D dense in K, Cp(K) is Borel in R?, Kis a
Rosenthal compactumby the Godefroy theorem, hence a Frechet space, and therefore the
functionals from C(K)*areBorel functions on (C(K),),7p) cf. [178]. In effect, the identity

(Cp(K), Borel(Cp(K))) = (C(K), CyL(C(K)))
Is an isomorphism of the measurable spaces, and hence the space (C(K),Cyl(C(K))) is
standard.

It is not clear if a compact space K must be separable, whenever the space
(C(K),Cyl(C(K))) isstandard.

Having explained background, let us reiterate the open part of the conjecture.

Problem (5.1.1)[170]: Let K be a separable compact space such that the function space
equipped with the cylindricals-algebra (C(K),Cyl(C(K))) is a standard measurable space.
Does the compactum K embed in B, (2*)?

Proposition (5.1.2)[170]: Let M be a Borel subspace of a separable completely metrizable
space, and let K be a compact subspace of B;(M) such that, for every f € Kthe set of
discontinuity points of f is countable. Then K can be embedded into the subspace of B, (2¢
consisting of functions with only countably manydiscontinuities.

Proof: Let M, be the set of all condensation points of the space M. We putM, = M \ M, and
we consider the projections p; of RM on to RMifori =1,2. The set M, is countable,
therefore the projectionp, (K) is metrizable. Since the Banach space C(2) is universal for
the class of all separable metrizablespaces (cf. [45]) and the pointwise topology is weaker
than the norm topology, we can find anembedding h, of p,(K) into C,,(2%).1f M; = @then
we are done. In the opposite case we proceed withthe construction of the required embedding
as follows.

Fix a metric p in 2¢. Let Q be a countable dense subset of 2*. Then the complement
P = 2%\ Qishomeomorphic to the space of the irrationals w®, and therefore we can find a
continuous injective map ¢ of p onto M, , see [181].We enumerate Q as { g, : n € N}and we
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take a sequence(p,,),enOf distinct points of P such that p(p,, q,) < 1/nfor ne N. For each
f € Kdefine the function gf : 2 — Rby

B f((p(x)) if x€eP
97 () = { fle(B))  if x€qy,

Forx € 2 Denote by N the set of all points of discontinuity of f. One can easily verify that

the functiong is continuous at every point of the set P\¢ (N ). Hence the set of points of

discontinuity of g, iscountable and it follows that g is of the first Baire class, see [181].
Finally, put C = 2¢ x {1, 2}and define h: K — B;(C) as follows:

. gf (x) if i=1
D) {hz(Pz(f))(x) if =2
for (x,i) € C. Clearly, C is a topological copy of the Cantor set, and a routine verification
shows that hisan embedding.
We shall use the following well-known description of the class of separable compact
linearly ordered spaces.
Let A be an arbitrary subset of a closed subset K of the unit interval [0, 1]. Put
Ky = (K x{0}) U (A x{1})
and equip this set with the order topology given by the lexicographical order (i.e., (s,i) <
(t,j) if either s <t, or s =tand i <j). Ostaszewski [209] showd that every separable
compact linearly ordered space is homeomorphic to K, for some closed set K < [0,1] and a
subset A c K.
Proposition(5.1.3)[170]: Let L be a separable compact linearly ordered space. If, for some
countable denseD c L, the space Cp (L) is Borel, then L embeds into B, (2¢).
Proof: By the mentioned above result of Ostaszewski we can assume that L = K, for a
certain closed set K in [0, 1] and a subset A c K. By [183] there exists a countable dense
subset E c K, containing D, and a countable C cA such that the space Cz(K,) contains a
closed copy of the set A\ C. Since K, is a first countable space, the identity map between
Cp(Ky) and Cg(K,) (taking, for any f € C(K ), the restriction f|D to f|E) is a Borel
isomorphism, see the proof of Theorem 2.2 in [182]. Therefore, the space Cz(K,)is Borel,
and this implies that A \ C and Aare Borel subsets of [0, 1]. Put M = A U {2}. We define a
map ¢: Ky - B1(M) by
t if s=2,
0 if sEA, andt >s,
<p((t, i))(s) 1 if seEA,andt <s,
0 ifted i=1andt =s,
1 iftedi=0andt=s,
for(t,i) € K, and s € M. A routine verification shows that ¢is continuous and injective,
hence it is anembedding. For every (t,i) € K,, the function ¢((t,i))(-) has at most one
discontinuity point (possibly t, when t € A). Therefore, from Proposition (5.1.2) it follows
that K, embeds into B; (2¢).
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Obviously, Proposition (5.1.3) implies the implication (ii) = (i) in the theorem below.
As was mentioned, the reverse implication, for all separable compact spaces, can be found in
[185].

Theorem(5.1.4)[170]: For a separable compact linearly ordered space L the following
conditions are equivalent:

(i) L embeds in B, (2%),

(ii) the space Cp (L) is Borel for every countable dense D c L.

Using Theorem (5.1.4) and [183] one can easily verify the properties of the following
example.

Example(5.1.5)[170]: Let A be an analytic non-Borel subset of the unit interval I = [0, 1].
Then the space I, is a separable compact linearly ordered space which is a Rosenthal
compactum, but does not embed in B; (2¢).

Theorem (5.1.4), if B;(2%).is linearly ordered, or by a result from [185], in the other case.
Therefore, the countable product K also embeds in B, (2¢).

We shall show (varying an approach used by Dennis Burke and in [72]) that for the
Lebesgue measure A on [0, 1], the set { f € L*: [ fdA > 0 }is not Borel in the topology
generated on L* by the multiplicative functionals in the dual space (L*). In particular,
representing the algebra L™ as a function space C(K), we have Borel(C(K),weak) +
Borel(C(K),pointwise). Since L”is linearly isomorphic to C(Sw), cf. [186], by the result of
Talagrand mentioned, we obtain the following example.

Example(5.1.6)[170]: There exists a compact space Ksuch that

Borel(C(K),norm) # Borel(C(K),weak # Borel(C(K),pointwise).
Problem (5.1.7)[170]:Let Borel(C(K),norm) = Borel(C(K),weak). Is it true that also
Borel(C(K), weak) = Borel(C (K), pointwise)?

If C (K) admits a Kadec (pointwise-Kadec) norm then Borel(C(K),norm) =
Borel(C(K), weak)(Borel(C(K), norm) =Borel(C(K),pointwise)). We do not know of any
instances where C(K) admits a Kadec norm, but fails to admit a pointwise-Kadec norm, cf.
[190].

Let us notice that in some models of set theory, there are compact spaces K such that

Borel(C (K), norm) = Borel(C (K), weak) = Borel(C(K), pointwise),
But C(K) admits no Kadec norm; see [184]. We do not know any such spaces constructed in
ZFC.

The above mentioned space K considered in [184] has in addition the property that

there is a countable dense set D in K such that the restriction map C(K) = Cp(K), cf. (1),
takes norm-Borel sets in C(K) to Borel sets in Cp(K) and vice versa. In particular, Borel(C
(K), norm)=Cyl(C(K)), cf. [176]. This can be verified by noticing that for the space K
discussed in [184], the pointwise Borel sets considered in [184], belong in fact to the
cylindrical g-algebra in C(K).
We shall now pass to a proof of the property of the space L™ stated at the beginning. We shall
obtain some stronger results, in a more general setting. Following Oxtoby [188] we shall call
a nonnegative Radon measure p on a compact space K a category measure, if p-null sets
coincide with meagre sets in K, cf. also [179].
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If v is any non-atomic probability measure and C (K) is a function space representation
of the algebra L), then Kis an extremally disconnected compact space and v gives rise to a
non-atomic probability category measure on K, cf. [180].

Let us recall that in a topological space X, the elements of the smallest s-algebra in X
containing open sets and closed under the Souslin operation are called C-sets, cf. [82]. The C-
sets are open modulo meager sets and any preimage of a C-set under a continuous map is a C-
set.

Let us also recall that a Radon measure v on a compact space Kis singular with respect
to a nonnegative Radon measure pon Kif vis concentrated on a p-null set.

Theorem (5.1.8)[170]:Let ube a non-atomic probability category measure on an extremally
disconnected compact space K. Then the set{f € C(K) : [ fdu > 0 }is not a C-set in the
topology generated on C(K) by the Radon measures singular with respect to u.

Proof: Since u is a category measure, the closure of a u-null set in K is p-null, cf. [188],
[179]. In particular, a Radon measure on K is singular with respect to u if and only if its
support is a u-null set.

Let Z be the collection of closed boundary sets in K, i.e., the collection of closed p-null
sets in K. We shall denote by T, the topology in C (K) whose basic open sets are defined by

N({f,2)={geCK):flg=g|2} Z€ Z

The topology 7, is stronger than the topology in C(K) generated by the Radon

measures singular with respect to u. Therefore it is enough to show that

{felCK): deu> 0}isnotaC —setin (C(K),T3).

To that end, we shall modify a construction from [72]. Let C be the collection of continuous
functions
c:U - {—1,1} where U = dom c is closed-and-open, (2)
Dome being the domain of c. We consider C with the discrete topology and CNis the
countable product of C. Let
M ={(cy,¢cp...) ECN :domc; c domcjyq,
u(dom c;) <1/3,ci4q | domc; = ¢}, 3)
and let ebe a subspace of the product of the space (C(K),J%) and the spaceM, defined by
e={(f,ci,cy...) EC(K)XM: f:K - {—1,1}, f|
domc; =c; foralli}. 4)
A key element of our reasoning is the following fact.
Claim: Let G,,G,,...be open sets in E, dense in a fixed nonempty open set in €. Then there
exists a continuous function h: H —» {—1, 1}defined on a closed-and-open set in Kwith
u(H) <1/3, and a point (cq,cy,... ) € M'such that for any continuous f : K — {-1, 1}
extending h, (f,cy,¢y,...) € N, G, .Each finite sequence (cy,...,c.) € C" which can be
extended to a point in M, cf. (3), determines a basic neighborhood in M
N(cy,eonr6r) ={(C1yeeesCryCrpqyenn )i (€1,¢5,... ) €E MY, (5)
and a convenient base for the topology in E is defined by
N, Z,cppe0n60) = (N, 2) X N(cy,...,cr)) N,
where f| domc, =c,. (6)
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To check the claim, we shall define inductively continuous functions f,: K —
{—1,1},Sets Z, € Z, and a SE€QUENCE Cq,..., Cr)Craqyer)Crypenes Cryevns Cr, o OF €lements
of C which determines a point in M, cf. (3), such that, cf. (6),
D #N(fnZnCrreoiCr,) € Gp, Zy, C domg,, . (7)
We shall start from picking a point (f;, ¢, ¢,,...) € G, and its basic neighborhood
N(fler CZJ---Ck) c gl'

cf. (6). Since u(domcy) < 1/3and u(Z,) =0, one can find a closed-and-open set V c
Kdomcy, cf. (2), such that Z,\ domc, < Vand u(domc;, UV) < 1/3. Then we can define
Cr+1:domc, UV — {=1,1}letting c,,1| domc, = ¢, cr41|V = f1|Vand we setr; =k +
1. This gives (7), forn = 1, cf. (6).

Suppose that the neighborhoodN' = N (f,, Zp, ¢4, ..., ¢y,,) has been already defined.

Then we pick a point (fp41,C1,..0,Cr,e..) E N NGpyq its  neighborhood
N(fn+1,Zn+1, ClovevsCrppenn) cl) c G,+, and then, as in the first step, we define
Ci41:domc; UW — {—1,1}, where W c K dom cis closedand-open, Z,,,,\ domc,cW and
u(domc; UW) < 1/3, lettingc;,4: | domc; = ¢, ¢4 1 |W = fn + 1|W, and we set
Tne1 = L+ 1. This provides (7) for n + 1.
Having completed the construction of the sets (7), let us consider, cf. (3) and (5),

U= ﬂ domc;andc: U - {—1,1},c|domc; = ;. (8)

l
Since K is extremally disconnected, the closure Uis open and ¢ extends continuously over U.
Moreover,by (3) and (8), u(U < 1/3 and since u(U\ U) = 0, we haveu(U) < 1/3. In
effect, we get a continuous
Function
h:U - {—1,1},h|U = c,u(U) < 1/3. (9)
We shall show that the function h and the point (¢, c,,...) € Mdefined in (7) satisfy the
conditions of the claim. Let f : K — {—1, 1}be an arbitrary continuous extension of h. We
have to make sure that (f, ¢y, cy,...) € N, G,. Since hcoincides with ¢; on its domain, cf. (8),
(9), so does f, and therefore (f,cy, cy,...) € &, cf. (4). Moreover, for each n, f,, coincides with
cr,, On its domain, cf. (6), (7), and sinceZ, c domc, , cf. (7), we have(f,c;,cp,...) €
N (farZn, €15.-+,Cr,) © Gy, for each n, cf. (6).
With the claim established, the theorem follows now readily. Let us consider the
projection, continuous with respect to the topology T,in C(K),
m: e - C(K), n((f,cl,cz,...)) = f, (10)

and let

E={f€C(K):f:K—>{—1,1},ffdy >o}. 11)

Aiming at a contradiction, assume that Eis a C-set in (C(K),T;). Then t~1(E) is a C-set in &,
hence open modulo meager sets in . Therefore, there are open sets G,, G5, ...,dense in some
nonempty open set in &, such that N,, G,is either contained in 7~1(E) or it is disjoint from
n~1(E). Leth: H —» {—1,1}and (¢, cy,...) € Mbe as in the claim, and let us extend hto
continuous functionsf_,, f; : K — {—1,1}, setting f;|K\ H = d for d € {—1, 1}. Then, for
anyd € {—1,1}, (f4,¢1,¢2,...) € N, G, and there fore either both functions f_,, f; are in E
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or both are in C(K)\E, cf. (10). However, since u(H) < 1/3,f_; du < 0and [ f; du >0,
and we reached a contradiction with (11).

To complete the proof it is enough to notice that the set Ein (11) is an intersection of
the set {f €C(K): [fdu>0}and the set{f € C(K):f:K —{-1,1}}, closed in
(C(K),T,), hence the firstof these sets is not a C-set in (C(K),T,), and it is not a C-set in the
topology on C(K) generated by the Radon measures singular with respect to u, which is
weaker than T,.

Since, moreover, Bus of weight 2% , this shows that Borel (C(T),norm) #
Borel(C(T ), weak), cf. [72].

It is an open problem if the Borel structures in C(K) coincide for separable Rosenthal
compacta. Thisis true if, in addition, K ¢ B, (w®) consists of functions with at most
countably many discontinuity points—in fact, as showd by Haydon, Molt6, and Orihuela
[180], in this caseC (K) admits a pointwise-Kadecnorm. It is not known whether this is still
true if one retains the restriction on discontinuity points of elements of K c B, (w®), but
drops the separability assumption; cf. [186].

Section (5.2): Spaces of Continuous Functions

We denote by wthe set of all natural numbers{0, 1, 2,...}. Any n € w is often regarded
astheset{0,1,...,n — 1}.

Let K be a compact space (all our topological spaces are Hausdorff), let C(K) be the Banish
space of all continuous real-valued functions on K and let M(K) = C(K)* be space of all
Radon (signed) measures on K. The M(K) is equipped with the weak*topology (denoted by
w*for short) unless otherwise stated.

We denote by M*(K) (resp. P (K)) the subset of M (K) made up of all Radon non-negative
(resp. probability) measures on K. For every t € K we denote by 6, € P(K) the Dirac
measure at t. We shall write coAgfor the convex hull of the set Ay := {6, : t € K}in
M(K).given a set A € M(K). We denote by Esq. (A) the sequential closure of A in M(K),
that is, the smallest subset of M (K) that contains A and is closed under limits of
w™* —convergent sequences. The sequential closure is obtained by a transfinite procedure as
follows. Define Seq®(A) := A,and let Seq®t1(A) be the set of all limits of w*-convergent
sequences in Seq®(A), and letSeq®(A) := Upg<q Seq® (A) whenever ais a limit ordinal.
Then Seq(4) = Seq®1(A),where w;stands for the first uncountable ordinal. The set coAgis
w*-dense in P(K) (just apply the Hahn-Banach theorem). For an arbitrary u € P(K), a
classical result (see [207]) states that u € Seq’(coAy) if andonly if p admits a uniformly

distributed sequence, i.e. a sequence {t , },e. IN K such that {%an 6ti} IS w*-convergent
new

to w. There is a number of well-studied classes of compact spaces K on which every Radon
probability measure admits a uniformly distributed sequence or, equivalently, the equality

Seq'(coAy) = P(K) (12)
Holds true. Indeed, K has such a property whenever it is metrizable, Eberlein, Rosenthal,
Radon-Nikodym or a totally ordered compact line (see [206]). The space K = 2°njoys that
property as well [201], where ¢ stands for the cardinality of the continuum. The Stone space
K of a minimally generated Boolean algebra satisfies Seq (coAg) = P (K) (see [196]) and, in
fact, this result can be strengthen to saying that equality (12) holds.
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Under the Continuum Hypothesis, we present a construction of a compact O-

dimensional space K such that
Seql(colAy) # Seq(coAy) = P(K)

(see Theorem(5.2.8) Our example has some features of an L-space constructed in [203] and
related constructions given in [209]. In fact, the compact space K of Theorem (5.2.8) satisfies
Seq(coAy) # Seq?(colAy) and Seq3(coAy) = P(K). Along this way, it was recently
shown in [197] (without additional set-theoretic assumptions) that for every ordinal
1 < a < w, There is a compact space K @such that

Seq®(col @) \ U SeqP(coly) # @

L<a

and Seq®**(col @ ) = Seq(col @) # P(K®).

Our interest on these questions is somehow motivated by their connection with the
study of Baire measurability in the space C (K). Namely, if C,(K) (resp. C,,(K)) stands for
C(K) equipped with the pointwise convergence (resp. weak) topology, then the
corresponding Baire o-algebras satisfy

Ba(C,(K)) < Ba(C,(K)).

It is well-known (see [174]) that Ba(Cp(K)) is generated by Ak, while Ba(C, (K)) is

generated by P(K). Thus, the equality

Ba(Cp(K)) = Ba(C,(K)) (13)
Holds true wheneverSeq(coAg) = P(K), and this is the case for many spaces as we pointed
out above. The compact space of Theorem (5.2.8) makes clear that equalities (12) and (13)
are not equivalent. We pay further attention to (13) and that it fails for K = fwand K =
Bw \w (Theorem (5.2.5) and Corollary (5.2.11).

We write P (S)to denote the power set of any set S. Given a Boolean algebra 2l by a
‘measure’ on Awe mean a bounded finitely additive measure. The Stone space of all ultra
filters on A is denoted by ULT (). Recall that the Stone isomorphism between 2and the
algebra Clop (ULT (2)) of clopen subsets of ULT (2!) is given by

A — Clop(ULT(Y)), A - A ={F € ULT(A): A € F}.

Every measure p on U induces a measure A = u(A) on Clop (ULT (A)) which can
beuniquely extended to a Radon measure on ULT () (see e.g. [211]); such Radon measure is
still denoted by the same letter u. We shall need the following useful fact about extensions of
measures.

Lemma (5.2.1)[194]: (J204], [208]).Let e’ = BBe Boolean algebras and let u be a measure
onB. Then p can be extended to a measurev on e’such thatinf{v(C AB): B € B} =
0 foreveryC €e'.

A compact space K such that Seq(coAy) # Seq(coAy) = P(K)For the sake of the
construction we first note the following two lemmas. We denote by spanAgthe linear span of
Agin M (K).

Lemma(5.2.2)[194]:.Let K be a compact space and letu € Seq®(spanAg)for somea < w;.
If ¢ € C(K)andv € M(K)is defined by
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v(Q) = f @odu  for every Borel set ) C K,
Q

Then v € Seq®(span Ag) as well. The same statement holds if span Agis replaced by
M*(K) nspan Ag and ¢ = 0.

Proof: We proceed by transfinite induction. The case a = 0 being obvious, suppose that
1 < a < w;and that the statement is valid for all ordinals § < a. There is nothing to show
ifais a limit ordinal, so assume thata = & + 1 for some ¢ < w; . Fix a sequence
{UnInewin Seqé (span Ag) which is w*-convergent to p. For every n € wwe define v, €

M(K) by v,,(Q) := fﬂ odu, for every Borel setQ € K, so that v, € Seq® (span Ag) by the
inductive hypothesis. Clearly, for every g € C(K) we have

limj gav, = limj gedu, =J gedu =J gdv
noJk noJg K K

that is, {v,, }ne,is W*-convergent tov. Thus v € Seq*'(span Ay).

Lemma (5.2.3)[194]: Let K be a compact space and let u € Seq®*(coAg) for some a < w;.
If v € M(K) is absolutely continuous with respect to p, then v € Seq®**1(span Ag).If in
addition v € M*(K), thenv € Seq** (M*(K) n span Ay).

Proof: Let ¢ : K — Rbe the Radon-Nikodym derivative of v with respect to p. Fix a

sequence {@g }keein C(K) such that lim, fK lo — @i|du = 0. for every k € wwe define

vy € M(K) by v, (Q) := fﬂ @, dufor every Borel setQ € K. Since each v, belongs to

Seq®(span Ag) (by Lemma (5.2.2) and {v ; }xenis Ww* —convergent to v(in fact, it is norm
convergent in M(K)), it follows that v € Seq**1(span Ay). For the last assertion, just
observe that ¢ and the ¢,’S can be chosen non-negative if v € M* (K).

We shall deal with the space X := w X 2%,where 2® = {0, 1}*the Cantor set is. For
any set B €X and n € w we write Bj,:= {t € 2:(n,t) € B}. Let Adenote the usual
product probability measure on (the Boral o-algebra of) 2.

We will construct algebra2 < P (X)such that the Stone space K = ULT (2)satisfies
the required properties. Let 2,be the algebra of subsets of X generated by the products of the
form AxC where A C wis either finite or cofinite and C € Clop(2%).

Clearly,2,is admissible in the sense of the following definition:
Definition (5.2.4)[194]: We say that a set BEX is admissible if B, € Clop(2¢) for alln €
wand lim, A(B),) exists. In such a case, we write
u(B) = lim A(Bpy)
We say that an algebra B € P(X)is admissible if every B € Bis admissible.
Lemma(5.2.5)[194]: Let B € P(X)be a countable admissible algebra and let
D < B. Then there is a set A ©X such that:
(i) The algebra generated by®B U {A}is admissible;
(ii) For everyD € Dwe haveD|, S Ay, for all but finitely manyn € w ;
(liu(A) < Ypepu(D).
Proof: Let {B;:j € w}and {D;:j € w}be enumerations of BandD, respectively.
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For every k € w, we denote by B, € P(X) the finite algebra generated by the collection
{Bj:j <k} U {D;:j <k}and we set “Dy:= Dy U... UDy € By. by the admissibility of
Bwe can define a strictly increasing function g : w — wsuch that for every k € wandn >
g(k)we have

lu(©) - 2(C)| < k—}rl forall C € By (14)
Define a set ACX by declaring that
Api= (Dp)n wheneverg(k) <n < g(k + 1)
and 4, := @ if n < g(0). Clearly, A satisfies (ii).
To show (i), notice first that every element B of the algebra B'generated by B U {A} is
of the form B = (B;nA) U (B;\ A) where i,j € w. since B is admissible and A4, €

Clop(2®) for every n € w, we have B}, € Clop(2”) for everyn € w to show the
admissibility of B it suffices to check that the sequences{A ((Bj nA)m)} are Cauchy,

new
because

A(Bn) = A((Bjn4), )+ 4B\ D) = A((B;n ), )+ A((B)m) - A((B;n4),)
for everyn € w. Fix € > 0. Since p is a probability measure on B, the sequence{u(Bj N
Ek))}kewis increasing and bounded and there is
k , € w Such that

u(B; N D\ Dy,) < e whenever k > k. (15)
k01+1 < & Takeanyn = g(ky).
Theng(k) < n < g(k + 1) forsome k = k,, hence (B; n A);,, = (B; N ﬁk)m and so

|2((B;n 4),,) (B n Dy,)| = [2((B; n Dy),,) - u(B; n D)
1

= |’1 ((Bj n Ek)m) - (B;n 5k)| +(B; N D\ Dy,) < Tr1 €
< 2g, (16)
By (14) and (15). It follows that |2 ((B; n A)ln) ~2((8;n A)lm)| < 4¢

Whenever n,m > g(k,).this s that the sequence {/1 ((B]- n A)Im)}

is Cauchy.
Finally,(iii) follows from the argument above by choosing

j € w with B; = X.Indeed, by taking limits in (16) whenn — ocowe get [u(4) — u(Dy, )| <
2¢ and so

Of course, we can assume further that k, > j and

new

u(d) < 2¢e+ u(ﬁko) <2+ z u(D;) < 2¢e+ z,u(Di)
i<kg lEw
Ase > 0 is arbitrary, we have u(A) < Y.;e, #(D;) and the proof is over.
Given an admissible algebra B < P(X), we write V'(B) to denote the collection of all
decreasing sequences {By }xe, 1IN B such that lim, u (By) = 0.
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Lemma (5.2.6)[194]: Let B < P(X) be a countable admissible algebra, S € NV (B) a
countable collection and € > 0. Then there is a set A ©X such that:

(i) The algebra generated by B U {A}is admissible;

(i) For every {By}rew € Sthereis k, € wsuch that

(Bk,)in € A for all but finitely many n € w;

(iii) u(4) < w.
In this case we say that S is e-captured by A.
Proof: Enumerate S = {{B}}icw:j € w}. for every j € wwe can pick k(j) € w smuch

that u(B,{(j)) < g/27*1. Now it suffices to apply Lemma (5.2.5) to the collection D: =

{Bijy: J € w}
Lemma (5.2.7)[194]:LetB € P(X) be an admissible algebra containing 2. Let{vy };e,be a
sequence of probability measures on P(X) such that:
(i) Eachvy is supported by a finite subset of X;
(i1) limy vy (B) = u(B) for every B € B.
Let B, € Bbesuch that u(B,) > 0. Then there is A S B,such that the algebra generated by
B U {A}is admissible and {v, (4) }xe,does not converge to p (A).
Proof: For every k € w we fix a finite set S, € Xsuch thatv,(S;) = 1. We begin by
choosing two strictly increasing sequences inw, say {n;};c,and {k;} e, ,Such that ny = ky =
Oand for every j € w we have:
(@) ve+1 (R N By) > 1(By) / 2, where R; == (w \ nj) X 2% € Uy;
(b) Skj+1 S Myyq X 29
This can be done by induction. Indeed, given n;, k; € w, the conditions
li;n vr (R;) = u(R;) =1 and liIEn v, (By) = u(By) >0

Ensure the existence ofk;,; > k; for which (a) holds; then we choose n;,, > n;satisfying (b)
(bear in mind that Sy . is finite).
Fix n € w.Take j € w such that n; < n <mn;,qsince A is atomless and (B, N Skjs)n IS
finite, there is C,, € Clop(2®) such that

(BO N Skj+1)|n = Cn = (BO)ln (17)
and

A(Cy) <

jt1 (18)
Now, define a set A < B, by declaring that Ap, := C, for every n € w.We claim that A

satisfies the required properties. Note that the algebra B'generated by B U {4} is made up of
all sets of the form (B, n A) U (B,\ A) where B;, B, € 8B. Thus, since B is admissible and
A € Clop(2¢) for every n € w, we also have B, € Clop(2“)for every B € B" and n €

w. on the other hand, (18) implies that lim,(4,,) = 0,
Hence u(A) = 0 and for any By, B, € B there exists the limit

lim2 (BN AU (B \ ), ) = k(B2)
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This shows that B'is admissible.
On the other hand, we claim that for every j € w we have
Ri N By N Sy, SA NS, (19)
Indeed, take n € w If either n < n;orn = n;y4, then (R; N By N Sy, )jn = @ (bear in mind
(b)). If n; <n <mn;,,, then (17) implies that (R; N By N Sk & (AN Skj+1)|n.
This shows the inclusion (19).
It follows that for every j € w we have

Uiy (A) = v, (A N Sij) >0 vy (R]- N B, N Skjﬂ) =
Vi;p, (Rj N Bo) > @ > 0.

Hence the sequence {v; (A)},ed0es not converge to u(A) = 0.
After those preparations we are ready for the main result.
Theorem (5.2.8)[194]: Assuming CH there is a compact space K such that

Seql(coly) # Seq(col,) = P(K).
Proof: Let {{v,’;z teew € < w1} be the collection of all sequences of non-negative measures
on P(X) which are supported by a finite subset of X. Weshall construct by induction an
increasing transfinite collection of countable admissible algebras {915 &< 601} of subsets
of X. We start from the algebra 2, already definedand for any limit ordinal § < w; we
simply set Uz := Upe Ayp.

For the successor step of the induction, let § < w,and suppose we have already
constructed the algebras {2, : n <¢&}. For every n < & we enumerate V() as {S(n, @) :
n < w,}. Lemma (5.2.6) applied to the countable collection

SE)={SMma): na<i}cN(¥Ue)
ensures the existence of a set A(¢ 2) € X such that S(&) is (1/2)-captured by A(¢, 2). Since
the algebra generated by 2 U {A(¢, 2)} is admissible, we can apply again Lemma (5.2.6) to
that algebra to find a set A(&,3) € Xsuch that S(&) is (1/3)-captured by A(&,3) and the
algebra generated by A U {A(§, 2),A(¢,3)}is admissible. Continuing in this manner we
obtain a sequence {A(¢,)) : j = 2}of subsets of X such that:
(@) S(&) is (1/j)-captured by A(E,j) forall j = 2;
(b) The algebra ﬁfgenerated by Arsand thefamily{A(¢,j) : j = 2} is admissible.
We now define a set A(¢, 1) € XDby distinguishing two cases:
(A) Iflimkv,f(B) = u(B) for every B € ‘2_15, then we can apply Lemma (5.2.6) to find a set
D¢ c X A(§,2) such that the algebra generated by e U{D¢} is admissible and

{v,f(Dg)}REwdoes not converge to M(Df). Set A(¢,1) = X Dg.
(B) Otherwise, we set A(§,1) := A(¢, 2).

We now conclude the successor step by letting Uz,, be the countable algebra
generated by 2 and the family {A(¢,)) : j = 1}. Observe that U, is admissible. Define an
admissible algebra %A € P(X) by U<y, Ue.

Note that2l has thefollowing properties:
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(i) For every countable collection S € V() and every € > 0 there is A € Usuch that Sis -
captured by A;

(if) For every sequence {By}rew € NV () there exists §, < w;such that for every &, < & <
wq and every j > 1 there is k € w such that (By), € A(¢, j),for all but finitely many n € w.
Indeed, these facts follow from property (a) above, bearing in mind that any countable
collection S € V() is contained in S(&,) for some &, < w;

I1. Introducing the compact space K. We now consider the compact space K = ULT (). Let
K* € K be the set of all ultrafilters that contain no set of the form {n} x 2*. We claim that
every F € K \ K*is of the form F, := {A € A : x € A}for somex € X. Indeed, if Fcontains
{n} x 2%,

For some n € w, then the collection {A, : A € F}is an ultrafilter on Clop(2¢),s0 the
intersectionﬂ{Am : A € F}consists of a single point t € 2¢,and there foreF = Fy for X :=
(n,t) € X. Since K\ K* = Upe,, {n} X 2¢ the set K*is closed in K. For any 4, B € A we
have

Bn K* < An K* whenever B,, € Ay, for all but finitely many n € w. (20)
Since U is admissible, for every n € w we have a probability measure u,,on 2l defined by

Un(A) := /1(14|n)
and lim,, u,,(A) = u(A) for every A € UA. Note that u (seen as a Radon measure on K)is
concentrated on K*, because u({n} x 2¢) = 0 for every n € w. We also have
u({F}) 0 for every F € K. (21)

Indeed, fixe > 0 and take any partition C of 2¢ into finitely many clopen sets with A(C) < ¢
for all C € C. For every F € K there is some C € Csuch that w X C € Fand so u({F}) <
U(lw X C) = A(C) < e.As € > 0 is arbitrary, this shows (21).
[11. Claim. Every closed G5 set H € K* with u(H) = 0 is amortizable Indeed, it is easy to see
that we can write

H= ﬂ B, N K* (22)
kew
for some {By }kew € N (U. Now let &, < w, be as in property I(ii) above. We shall check that
the countable family A := {A N H: A € g, }is a topological basis of H (which implies
that H is amortizable).

To this end it is sufficient to that 4 N H € A whenever A € A. we proceed by
transfinite induction bearing in mind that% = Uge,, Ue. Let & < w;and suppose that An
H € Awhen everd € U,z U,. If either ¢ is a limit ordinal or & < &ythen there is nothing to
show. If ¢ is of the form & = n +1 for some n = &,, set

e':={AeU;: ANH € A}
Observe that e’is an algebra of subsets of X containing?l,. By the choice of {,(bearing in
mind (20)), for every j =1 there is k € wsuch that B, N K* S\A(n,)) NK*, soH €
\A(,J) (by (22)), hence A(n,)) N H = H € Aand therefore A(n,j) € €. It follows that A =
e’ this shows that A N H € A when everA € ¥, as required.
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IV. Claim: For every j € w, let H; € K*be a closed G5 set with u(H;) = 0. Then F :=
U, e H, is metrizable and u(F) = 0.
Indeed, as in the previous step, for every j € w we can choose {B}]};c,, € NV (W)such

N &k
Hj_ﬂBan.

kEw

Fix i € w. By property I(i), there is A; € Usuch that the collection {{B,f}kew 1 j €E w}is i
captured by A;. In view of (20), for every j € wwe have

that

— B * 1 *
H; = ﬂBan c A, nK
1k€a)
and so F € A, n K*. Since u(4,) < H—lfor everyi € w, we have u(F) = 0. Moreover, since

F € H := N, A4, N K*and H is metrizable (by Claim 111), it follows that F is amortizable as
well.
V. Claim: For every closed separable setD < K*we have p(D) = O.Indeed, let {F; : j € w}be
a dense sequence in D. For every j Ew we haveu({F;}) = 0 (by (21)) and so there is a closed
Gsset H; © K™ containing F; with u(H;) = 0. Since € U ¢, H, , an appeal to Claim IV
ensures that p (D) =0.
V1. Claim: The measure p does not belong to Seq*(coAy).
Our proof is by contradiction. Suppose there is a sequence { 6y }xeqin coA,which is w*-
convergent to u. For every k € w, consider the finite set
Li:={F € K":6,({F}) > 0}
And let 6;, be the Radon measure on K defined by
0,(2):=0,(Q\ K*)for every Borel set Q € K.

We claim that {6} }xe, is w* —convergent to u. Indeed, the set D := Uy, I Satisfies

u(D) = 0 (by Claim V) and so we can find such that D € N;¢,, B,.Now, fix A € A.We have

16k(4) — 6,(4)| = 6, (AN K*) =< 6,(B)forevery i,k € w.
Bearing in mind that
lilgn Gk(/i) =u (A), lilgn HR(EL) = ,u(§1) and lil_mu(E) =0,

we get lim; 0, (4) = u(A). As A € Wis arbitrary, {6; }xe, i
w* —Conver Gent to L.

On the other hand, each 6, is a linear combination (with non-negative coefficients) of
finitely many elements of Ay ;= {6TX: X € X}, where Fyy = {A € W X € A}
(see I1). Hence 6, comes from a non-negative finitely supported measure on P(X)and so
there is & < w,such thatd;, (4) = v,f (A) for every A € A and k € w. Bythe construction (see

I) there is some A € A such that {vf: (A)}repdoes not converge to p (A), thus contradicting
the fact that {6}, }xc., 1S W*-convergent to p.
VII. Claim: The measure u belongs toSeq?(coly).
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Indeed, the sequence {u,}new is W* —convergent to p as we pointed out in II. On
theother hand, every u, is concentrated on the closed metrizableset {n} x 2« (it is
notdifficult to check that it is homeomorphic to 2), hence u,, has a uniformly distributed
sequence and so u,, € Seql(coAy).

V111, Claim: The equality Seq3(coA,) = P(K) holds.
Let v € P(K). We can write v = v; + v, + v; where v; € M*(K) satisfy:
(@) v, (Q) := v(Q\ K*)for every Borel set Q € K;
(b) v,is absolutely continuous with respect to ;
(c) vgis concentrated on a Borel set B € K*with u(B) = 0.
For everyn € wwe define 8,, € M*(K) by
6,(Q) = v(Q N nx 2%) for every Boral set Q € K
Then 8,, € Seq*(M*(K) n spanA,),because 6, is concentrated on the closed mortizable set
n X 29 = Upen{k} X 29 . Since the sequence {6,},c,, is w * — conver gent to v, ,we
conclude that
v, € Seq?(M*(K) N span Ay).

On the other hand, since v, is absolutely continuous with respect to u €
Seq?(coAy)(see ClaimVII), we have v, € Seq3(M*(K) N spand;) by Lemma (5.2.3) .

Concerning v, note that (by the regularity of v3) we can assume that B is of the form
B = Uj<, F;for some closed sets F; € K*.Now, for every j € wwe can find (using the
regularity of u) a closed s set H; € K*such that F; € H; and u(H;) = 0.

From Claim IV it follows that B is metrizable and so v; € Seq!(M*(K) N span A).
Therefore, v = v; + v, + v3 € Seq®(M*(K) N span Ag).sincevis a probability measure, it
is not difficult to show that v € Seq3(co Ay) as well. This completes the proof of Theorem
(5.2.8)
The cases of 8, and £,\5
Let K be a compact space. It is known (cf. [210]) that for every Ba(C, (K))-measurable y €
P(K) there is a closed separable set F < K such that u(F) = 1. Thus, if the equality
Ba(Cy(K)) = Ba(Cy(K))
Holds true then every element of P (K) is concentrated on some closed separable subset of K.
We make clear that the converse statement fails in general, since Ba(C,(B,)) #
Ba(C,,(B,)) (Theorem (5.2.5) this will be a consequence of the construction given in
Theorem (5.2.3) below.
Recall that the asymptotic density of a set A € w is defined as

_|Ann]|
d(4) := lim
nn

Whenever the limit exists. We shall write D for the family of those A © wfor which d (A) is
defined. The following lemma is well-known.
Lemma(5.2.9)[194]: If {4, }ne,iS @n increasing sequence in D, then there is B € Dsuch that
A, \ Bis finite foreveryn € w and d(B) = lim,, d(4,).
Theorem (5.2.10) [194]: Thereis v € P(p,,) such that:
(i) vis of countable type, i.e. L*(v) is separable;
(i) v(By \ @) = 1;
(iii) v(F) = Ofor every closed separable set F € 8, \ w.
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Proof: Let {t,},c,De a uniformly distributed sequence for the usual product probability
measure A on 2. For every E € Clop(2¢) we define ¢ (E) :={i € w : t; € E},s0 that

E)Nn 1
lim 201 _ lim—z 1,(t;) = A(E),
n n n N«
<n
Hence ¢ (E) belongs to Dand d(¢(E)) = A(E).lt is easy to check that
W:={p(E):E €Clop (2°)} =D

IS a (countable) algebra. Let 1S() be the family of all increasing sequences in 2. By Lemma
(5.2.9) forevery S = {S,,}new € IS(A) we can find B € Dsuch that S,,\ Bs is finite for every
n € wand d(Bs) = lim,, d(S,).
Let B € P(w) be the algebra generated by 2L U {Bs : S € IS(A)}. Fix any free ultra filter
U on w and define a probability measure p on Bby
__|BNnn]
u(B) = lim :
n—oUu n
so that u(B) = d(B) whenever B € B8 N D. Observe that the family
B, :={B € B:inf{lu(BAA):A €U} =0}
is an algebra containing 1. We claim that Bs € B, for every S = {S,, }n,c, € IS(U).
Indeed, fix n € wand observe that, since S, \ Bgis finite and S,, € D,, we have S,, N Bg €
Dand d(S, N Bs) = d(S,). Now, since B; € Dwe also have Bs \ S,, € Dand
d(Bs\ Sp) = d(Bs) —d(SnNBs) = d(Bs) —d(5y),
Hence u(Bs A Sy) = u(Sp\Bs) + u(Bs\ Sp) = d(Bs) — d(Sy).
Bearing in mind that d(Bs ) = lim,d(S,,), we conclude thatBs € B, as required.
It follows tha tB, =B. Using Lemma (5.2.1), we extend u to a probability measure
von P(w) so thatinf{v(C A A) : A€ A} =0 for every C S w. Observe that v(seen as a
Radon measure on ) has countable type (because A is countable).
In order to check that vis concentrated on B,\w, fix n € wand take anye > 0. Choose a
partition 2¢ = U%_, E;such that each E; € Clop(2¥)and A(E;) < &.Then w = UL, (E),
each @ (E;) € Yand v(p(E;)) = u(p(E;)) = d(e(E)) = A(E;) < &.Since n € o(E;) for
some i, we have v({n}) < v(@p(E;)) <e. As € >0 is arbitrary, we get v({n}) = 0. It
follows that v(£,\w) = 1.

Finally, take any closed separable set F € S, \wand let {F,},c ,be a dense sequence
in F. Fix e > 0. As in the previous paragraph, for every k € wwe can find a partition of
winto finitely many elements of Ahaving asymptotic density less than £/2%*;0one of those
elements, say Ty, belongs to F,. Set

Sy = U Ty for every n € w
k=n

so that S = {S,,},,c, € IS(A).We have F, € B for every n € w, because S,,\ Bsis finite and
S, € F, € B,\w. Hence F € Bs. Since

d(S,) < Yren d(Ty) < zmszﬂ < eforevery n € w,
it follows that v(F) < v(Bs) = u(Bs) = d(Bs) = lim, d(S,) < «.
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As e > 0is arbitrary, we get v(F) =0. The proof is over.

Bearing in mind the comments at the beginning, Theorem (5.2.10) gives immediately the
following:

Corollary(5.2.11)[194]: .Ba(Cy(By\w)) # Ba(Cy, (B, \w)).

We arrive at the main result.

Theorem (5.2.12)[194]: Ba(C,(B,\w)) # Ba(Cy(By))-

Proof: Letv € P(B,) be the measure of Theorem (5.2.10). We shall show that vis not
Ba(C,(B,))-measurable by contradiction. Suppose v is Ba(C,p,,))-measurable and fix a
countable set I < S, such that v is measurable with respect to the o-algebra X on C(K)
generated by {8z:F € I}.Set F := T \w S B, \w, so that v(F) = 0.

Thus, there is A € w with v(4) > 0suchthat An F = .

We can define a measure m on P(4) by m(B) := v(B) for every B € A. We claim
that m is Borel measurable as a function on P (A) (naturally identified with 24).

Indeed, just observe that the function

@: P(A) — C(K), @(B) = 1p,
is Borel- X -measurable, because 8o @ =0 for every F € [\w (bear in mind that A N
(I \w) = @).Since in addition m vanishes on finite sets and m(A4) > 0, an appeal to [202] (cf.
[201]) ensures that m (seen as a Radon measure on SA) has uncountable type, which
Contradicts the fact that v has countable type.

While P-points do exist under Martin’s axiom and in many standard models of ZFC,
consistently there are no P-points [212]. Moreover, consistently there are no measures on
P (w) extending asymptotic density and having property (AP) [205].

Recall that C(K) is called a Grothen dieck space if every w*-convergent sequence in
M(K) is necessarily weakly convergent (see e.g. [198]). The spaces C(S,)and C(S,\w) are
examples of Grothendieck spaces. Our motivation for Problem (5.2.17) comes from the
results and the following fact:

Proposition (5.2.13)[194]: If K is infinite and C(K) is a Grothendieck space, then

Seq(coAy) # P(K).
Proof: We first claim that every element of Seq(coA},) is concentrated on a countable subset
of K. Indeed, let {u,},c., D& any w* -convergent sequence in P(K), where each u, is
concentrated on a countable set C,, < K, and write u € P(K) to denote its limit. Since C (K)
is Grothen dieck, the sequence {u, }»e, converges to p weakly in M (K) and so

y(K\UCk>=lirrln,un<K\UCk>=O,

kEw kEw
therefore p is concentrated on a countable set. This shows the claim.

Since C(K) is Grothendieck, it has no complemented copy of c,(cf. [198]), hence K is
not scattered (see e.g. [200]) and so there are elements of P(K) which are not concentrated on
a countable subset of K, [211]. It follows that Seq(coA,) # P(K).

2
B2s_,

1)) * Ba(C(iz_l(,Biz_l)).

Proof: Letv € P(,B(iz_l) be the measure of Theorem (5.2.10). We shall show that v is not
Ba(Cf)z_l(Bf,z_l))—measurable by contradiction. Suppose v is Ba(Cgﬁf)z_l))—measurable
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and fix a countable set I < B2._, such that v is measurable with respect to the o-algebra X

on C(K) generated by {§z:F2€l}. Set F?:=](w?—-1) < B2 ,\(w?—1), so that

v(F?) = 0.

Thus, there is A?> € w? — 1 with v(4%) > 0 such that A2 n F? = @.

Corollary (5.2.15)[260]: If K2 is infinite and C (K ?) is a Grothendieck space, then
Seq(coly2) # P(K?).

Proof: We first claim that every element of Seq(coA,z) is concentrated on a countable

subset of K2. Indeed, let {u, },,c,,b€ any w*-convergent sequence in P(K?), where each u,,is

concentrated on a countable set C,, € K2, and write u € P(K?) to denote its limit. Since

C(K?) is Grothen dieck, the sequence {4, },e, converges to u weakly in M (K?) and so

(v [ o) =i (i3 | ) =0
n
k?ew k?ew

therefore p is concentrated on a countable set.
Section (5.3): Banach Space
Given a compact space K, by C (K) we denote the Banach space of continuous real-
valued functions K, equipped with the standard supremum norm. If k = Bw,the * Cech-Stone
compactification of the space w of natural numbers, then C (8 ) is isometric to the classical
Banach space [, .
One can consider three natural topologies on C (K): 7, € weak S norm, where is
T,the topology of pointwise convergence. Consequently, one has three corresponding Borel
o -algebras
Borel (C(K)z, ), € Borel(C (K), weak) € Borel(C(K), norm).
Those three o -algebras are equal for many classes of nonmetrizable spaces K, this is the case
for all spaces K such that the space C (K) admits the so called
Pointwise Kadec renorming, see [175] and [190], we also refer to [170] for some comments
concerning coincidence of these o -algebras.
On the other hand, Talagrand [69] showd that
Borel(C(Bw) weak) = Borel(C(Sw), norm) .
Marciszewski and Pol [170] showed that
Borel(c(s)z,) = Borel(C(s) weak)
For S being the Stone space of the measure algebra. Since, for the space S, the Banach
spaces c(s) and c(pBw) isomorphic, it follows that c(s) has three different Borel structures.
Let us note that the Borel structures in function spaces
(C(S)7,) , and (C(Bo)t,)
Are essentially different.
We show that
Borel (C(pw),z,) = Borel(C(sw) weak) ;
our result and Talagrand’s theorem mentioned above imply that, even though B is
separable, the space C(pw) possesses three different Borel structures as well.
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Proving the main result, stated below as Theorem (5.3.10), we build on ideas from

[170] and show that in fact there is a measure ;zeC(,Ba))* which is not point wise Borel
measurable.

Recall that, if ¢:K — L is a continuous surjection, then the map f— f ¢ defines an
embedding of C(L) into C(K) with respect to the norm, weak, and point wise topologies.
Since pw is a continuous image of »", it follows from Theorem(5.3.10) that fore™ = B, /o
one also has

Borel (C(o")z,) = Borel (C(o") weak).

This result was obtained in [170] under some additional set-theoretic assumption.

We show that no sequence of pointwise Borel sets separates points of C(w™). Contains
some remarks concerning o -fields of Baire sets in function spaces on B» and w*.

We shall consider only nonnegative, finite measures. We will use the well-known fact
that any finitely additive measure p on (w, p(w)) corresponds to auniquely determined Radon

measure u on B such that u(A) =[¢(K), for any A e p(w) , where A is the closure of A in
po, cf. [L77].
We consider only measures x on o vanishing on singletons; then for the

corresponding measures x on Ao, we have u(w)=0, and we may as well treat such

measures /Al as being defined on o * .

The following auxiliary result can be found in [215].
Proposition (5.3.1)[213]:If (G, ), is a sequence of dense open subsets of 22 then there is a
sequence (1,) of pair wise disjoint finite subsets of » and a sequence of functionsg, : |
such that y <(,G, for every ye2°forwhichtheset{ new : z/1, = ¢,}isinfinite.
Proposition (5.3.2)[213]:No nonzero measure on e, vanishing on singletons, is measurable
with respect to the o -algebra of subsets of 2 having the Baire property.
Proof: Suppose, towards a contradiction, that ., treated as a function on2“, is measurable

with respect to the o -algebra of subsets of2” having the Baire property. Without loss of
generality, we can assume that u(w) . The inverse image »*(S) of any Borel subset S of the

unit interval [0, 1] is a tail-set with the Baire property, hence, by 0 —1 Law (see [217]) is
either meager or comeager. Observe that there exist (necessarily unique) t<[0,1] such that
u*(r) is comeager. Indeed, if »*(1) is comeager, then we are done. Otherwise, we can define
inductively a sequence of integersx, <2" -1, such that z([k, /2", (k, +1)/2"))is comeager for n
new. Then the required t is a unique element of (., [x,/2",(x, +1)/2").

The map h: p(w) — p(w), defined by h(A)=w\A , is a homeomorphism of p(w) Such
thath («((z))= #*(t~7) . There fore t=1-t ,and t t=1\2.

By Proposition (5.3.1), we have functions ¢, : 1, -2 defined on pairwise disjoint finite
sets 1, such that u(A)=1/2 whenever y, agrees with infinitely many ¢, 's .

Let N,,N,,N, be a partition of! Consisting of infinite sets and let

B, :U{{K:gon(/c):l}: ne Ni},
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i =1,2,3. Then, for each i <3, u(B,)=1/2 and the sets B, are pairwise disjoint,a contradiction.

For any subset A of » we write

— A
d(A)= Iimsup‘ ann| :

For the outer asymptotic density of a set Aand
d(A):Iinm‘A%rﬂ,
Whenever the set A has the asymptotic density, i.e. when the above limit exists.
Given a bounded sequence(y,),., and an ultrafilter pew’, bylim », we denote the
@ limit of (3, ) . For any ultrafilter p < " , we define the measured on « by the formula
|ANN|

dp(A)zlipm —

ForAc w, cf. [177] or [195].

Lemma(5.3.3)[213]: For any ultra filter p e »* and any € > , there exists asetAc » having
asymptotic density and such thatd(A)<«.

Proof: Taken>1 such thati/n<e¢ and put A ={ni+k:icw} for k=04,..,n—1. Then there exists
k <n such that A, e . Clearly, d(A)=1/n .

We also recall the following standard fact concerning the outer density. Here, for
A Bc o, Ac*B denotes, as usual, that A\B is finite, and we denote by A= the seta\ A, where

A is the closure of Ain go.

Lemma (5.3.4)[213]: Let £>0 and A, cw,new, be such that A c A, and d(A, )<« for every
new . Then there existsAc| J,.,A, suchthed(A<e) and A, < A foreveryneo .

Proof: By the definition of d we have

‘An k|

T <& .

Without loss of generality, we can assume that the sequence (k,) is increasing. We define.

AzngwAn m(km\kn)gnLEJwAn.
Since A, c A, , we have(A, \k,)c A , and therefore A' = A* for every new.

For any k >k,, we havek ek, \k, , for someneo , and ANk c A, Nk therefore|ANk|/ <
, and consequently d(A) <« .

Obviously, for the setsA and Aas in the above lemma, we havey,,6 A < A" and
d,(A)<e forany ultra filter p € »*. Let us note, however, that this does not necessarily mean
that for every increasing sequence A,c A c..cw such thatd (A)<e there is A almost
containing every A, and such that d_(A)<e.

Measures onpP(») With such an approximation property may fail to exist, see [216] for
details.
Corollary (5.3.5)[213]:For any ultrafilter p e »*, the measure b d, vanishes on separable

subsets of »" .

vn e w3k, € wVk,

n+l

186



Proof: Letx be a subset of »*contained in the closure of a set{F, :ncw}cw’. FiXe>0. For
anynew, by Lemma(5.3.3) , we can pick B, e F, withd(B, )<e¢/2"*. Then, forA =U,., B, , we
haved(A, )<&, and we can apply Lemma (5.3.4) for the sequence(A,) , obtaining the set A
satisfyingd(A,)<e. Foranynew , we haveB, c A, ' A , hence Ac F, . Therefore the closure in
o *.0f the set{F, :new} is contained in A", andd, (x)<d (A")<s . Since s was arbitrarily
chosen, it follows thatd, (x)=0.

Let ¢ be a fixed ultra filter from » * and let x=d , be the measure on p(w).

We write 4 for the corresponding Radon measure on g(w) .

Then 4 is a continuous functional onc(sw) so in particular 2 is measurable with respect to

the o -algebra of weakly Borel subsets.
We shall show that the measure 2 is not point wise Borel measurable and in this way

conclude the main result. The approach presented below builds on the technique developed
by Burke and Pol [72] and Marciszewski and Pol [170].
We need to fix several pieces of notation. For a set X, by[x]* we denote the family of all

finite subsets of X , and X = stands for the set of all finite sequences of elements of X . Given
sequencess,te X ““snt , sat denotes their concatenation.

For functions f and f g , f <g means that the domain dom(f) of f is contained in the
domain of g and g\dom(f)=f . We also use this notation for sequences, treating them as
functions.

Writing 2 = {0, 1}, we denote by C (Bw2) the space of all continuous functions
f : o — 2 equipped with the pointwise topology.
In the sequel we consider some subsets of (P(w))* = P(w)x P(w) ; a typical element of such a set
is a pairC=(A,B), where A,B< . Given some C, €(P(w))*, we shall use the convention for
elements that every C,can be written as C, =(A,B,).

Let e~ be a subset of (P(w)x P(w))” of those sequencesc = (c,,c,,...) for which the following
conditions are satisfied for every i:
(I) AcAL B B A NB =0;
(id(4,),d(B;) < 1/6.
We moreover denote by & the set of all finite sequences from (P(w)x P(w))™ satisfying.
Given f eC(pw)ie{0l} ,and Ac o , we write f \A =i if the equality
f(x)=i holds for 4z -almost all xe A" .
We equip P(w)x P(w) with the discrete topology and é with the product topology inherited
from P(w)xP(w)” . Finally, we define a topological space E that is crucial for our
considerations as follows

E={(f,c)eC,(Bw2)x é: f\A =0, f\B, =1foreveryn };
here c¢=(c,,c,,c,...) andC, =(A,B,) .
Let3 be the set of all pairs

2=(2(0), 20)) efo’ " <[],
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such that z(0)Nz(1)= @. Forz,z’ e 3 we write z c z'to denote that z(0)c 2'(0) and z(1)c '(1).
Basic open neighborhoods in E are of the form N(s,z,5) , wherese2*, ze3,se

N(o,z,s) is the set of all (f, ¢) € E such that

(@) f(x)=i For everyxez(i)i=01;

(b) o< f ands=<c.
Note that every set of the form N(o, z,s) IS nonempty, since £ vanishes on singletons.
Let us say that SE& captures ze 3 if, writing s=t~ (A B), we have z(0)c A"andz(1)c B".
Lemma (5.3.7)[213]: Every basic open setN(o,z,s) in E contains a neighborhood N(c,z,s')
where s’ capturesz.
Proof: Indeed, if (A B) is the final pair in s then for anys>0, using Lemma(5.3.3) we can

find sets c,D < » Of asymptotic density > & and such that z(0)c C*z(1)c D", z(1)c D*. Then we
can puts’'=s~(A,B’), where A = AUC,B'=BUD ande¢ is small enough.

Lemma (5.3.8)[213]:Let N(o,z,5s) be a basic open set in E, where o €2'.IfG isa dense open
subset of N(o,z,s) then, for everyK >1, there are m > k,z’e3with zcz', € S with s<s's,
and a function

5 and

p:1={i:k<i<m}—2,
such that for every r e 2**
N(O'r\z'm(p,z',s')gG.
Proof: Givenz, 2", we have N(c n7,,2,5)NG = @ so for some interval
l,={i:k<i<m} and ¢ :1, > 2 there arez, 3zands, >s such that
N(amr,go, Z’,s’)gG.
Take anotherz, e 2“*. Apply the same argument for N(c nz, n¢,,7,5,) . It is clear that we arrive

at the conclusion after examining all r e2** .
Lemma(5.3.9)[213]: Let (G,),_, be a decreasing sequence of open subsets of E such that

G, # ¢ and every G, is ense inG, . Then there exist a sequencec=((A,,B,)),_, ¢, SeSABcw ,
countable sets z(0).Z(l)cw” , and a sequence ¢,:1, —»2 of functions defined on pairwise
disjoint finite sets I, c w such that

(DU A =AU, B =B, ANB=4¢;
(i) u(A).u(B) < 3
(iii) z(0)c A", Z(1)c B" ;
(iv) forevery feCp(ﬂa),Z)SatiSfying
— f\A=0,f\B=1,
—f\z(i)=ifori=01,
— f\l,=9,,
— f\I, =g, forinfinitely n>1,
we have .
Proof: Fix a basic neiéﬁbérhood N(oy,2,,5,)<= G, ; by Lemma(5.3.7) we can assume thats,

capturesz,. Take k, such that o <2 , setl, =1{0,...k, —~1}and ¢, = gy.
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We shall define inductively natural numbers k,<k <k,<.. ,  functions
o, 1, =li:k,, <i<k -2, pairsz,e3 withz, cz, .., and sequencess, <s, <... in G such
that for everyn >0

—s, captures z,;

— for everyr e 2™ we have N(p, "t "o, .,,2,.4,5,,) S G,y -
Having k. ,¢,.. defined, we make the inductive step using Lemma (5.3.8)for the
neighborhood N(g,,z,,s,) with G=G,,NN(¢,.z,,s,),1=k,, and k=k and we use m,z’, and s’
given by this lemma to define k_,,z..,, and s_,. We complete our choice applying Lemma

(5.3.7).
The sequence s, € S defines the unique elementc=((A,B,)ncwee ; we take A Bapplying

Lemma (5.3.4) to sequences (A,), and (B,) (see also the remark following the proof of
Lemma (5.3.4). We putz(0)=U, z,(0)and Z(1)=U, z,(1); note that z(0)c A" and Z(1)cB".

Now, if f satisfies (iv) then(f,c)eG, , for infinitely manyn, so(f,c)eN,G, .
Theorem(5.3.10)[213]: The measure z is not measurable with respect to the point wise Borel
sets inC(Bw). In particular,

Borel(C(fw), 7, ) # Borel(C(Bw), weak) .

Proof: Suppose otherwise; then

F,={f €C,(fw.2): [ fdi<1/2],
is pointwise Borel inCp(Bw,2). LetF =, C(Bw,2)\F, .
Let z: E—C,(Bw,2)denote the projection onto the first axis. It follows that the sets z*(F, )are
Borel in E, so both z(F,)and z*(F,) have the Baire property in E . Therefore, for some
ic{04}, there is a decreasing sequence (G, ), of open sets in E , whereG, = ¢, every G, is dense
inG,and N, G, c7*(F,).Take cee’A Bc w,2(0),Z(1),¢,:1, —»2 as in Lemma (5.3.9)
Let % be an uncountable almost disjoint family of infinite subsets of ». ForRe®R let

l=1,U U I,;

neR

n+l*®

Then the family {1, : R e )}is almost disjoint too. Therefore there is ReR such that

— (z(0o)Uz@)N1;=¢, and

- /&(IR):O'
SetA' =A\I,,B' =B\I,. Take any function f eC(fw,2) such thatf =0 onA, f =1, on B’and f is
defined on 1, sothat f\1,=¢, forne RU{0}.
Then f=0 onz(0) and f=1 onz(@)f\A=0,f\B=1 . It follows from Lemma (5.3.9) that
(f,c)en,G,cz*(F) .
On the other hand, f can be freely defined on the set

D=w\(AUB'Ul,),

Where 4(D)=>2/3, sof fdi can take values less than 1/2 and greater than 1/2, a contradiction.

Let us recall that in a topological space X , the elements of the smallest & -algebra in x
containing open sets and closed under the Sousing operation are called C-sets, cf. [82]. The
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C-sets are open modulo meager sets and any preimage of a C-set under a continuous map is a
C-set.
Theorem(5.3.11)[213]: No countable family of C-sets separates the functions in the space
Clo" 7,) .
Corollary(5.3.12)[213]: There is no Borel-measurable injection ¢ =(C(o") 7, ) (C(w).7,) .
We keep here a part of the notation introduced; in particular, we will use the space € and the
sets S, 3.
ByC,(w'2) we denote the subspace of (C(o") 7, ) consisting of 0 -1-valued functions.
The role of the space in [E will be played by the following space
F={f,c)eC,(w',2)xe’: f\A =0, f \B; =1foreveryn| ;
Wherec =(c,,c,,c,,..) and ¢,=(A,B,) .
We will say that a pair ze S and a sequences =((A,,B,)... (A,B,))e &
are consistent if z(0)NB; =¢=2z(1)N A;. Clearly, if s captures z,
then s and z are consistent.
Basic open neighborhoods in FF are of the form O(z,s) , whereze 3 andze & are consistent,
ano(z,s) is the set of all(f,c)e F such that
(A) f(x)=i foreveryxez(i)i=01;
(B)s<c.
Note that the condition that s and z are consistent implies that every set O(z,s) is nonempty.
Repeating the proof of Lemma (5.3.7), one easily obtains the following
Lemma (5.3.13)[213]: For any consistent ze3 and s € &, the basic open seO(z,s) in F

contains a neighborhood O(z,s’), where s’ capturesz The proof of Theorem(5.3.11) is based

on the following auxiliary result.
Lemma (5.3.14)[213]: For any sequence (X, ) _, of C-sets in IF there exist a sequence

c=((A.,B,)),., ¢ And setsA B c wsuch that
U A €A U, B B, ANB =4,
— u(A) u(B)<t
— forany n e o, the set
{feC (@ ,2): f\A =0 \B" =1jx{C}
Is either contained in X, or disjoint fromX_ .
Proof: We inductively define a decreasing sequence(v,) of nonempty open sub- sets of F

and for every nwe choose
(i) sequences (Ui) of open sets dense in (v), such that N_,U! is

either contained in X, or disjoint from X ;

(i) %<~ and*> € & capturing “such that %rt < %51 =5 and

0(z,,s,)c N U;.

i,k<n
Suppose that the construction has been carried out fori<n (orn=0) . Since
Xn mO(Zn—lfsn—l)
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is a C—set there is a nonempty open setV, c0(z,,,s,,) and a sequence of itsdense open subsets
Uy), such thatn,_, U is either contained in X, or disjoint from it. Then the set G, =N, .Uy IS
open and nonempty (because V, aredecreasing and U, are dense in V, ). Moreover,
G, cV,c0(z,,.5s,)
Now, we can choose consistent z, 3 and s, €3 such that z,,= z,, s,, <s,, andO(z,,s,) <G, ;
by Lemma (5.3.13) we can additionally require that s, captures z,. The sequence s, <s, <...
defines the unique elementc=((A B, )),., €€¢'. We also obtain the sets A,B in the same way as in
the proof of Lemma(5.3.9) , applying Lemma (5.3.4)to sequences(A, ). and(B,), -
It follows that whenever the function fecp(a)*,z) takes values 0 0 A" andl on B*, the pair
(f,c) belongs to FF and, for every n,(f,c)e0(z,,s,)sinces, <c and s, captures z,. Therefore
(f.c)eN NU=N NUY ngwUk” :

new ik<n new kew

for every n, and the lemma follows.
Theorem (5.3.11) can be easily derived from the above lemma. Indeed, if Y,, are C—sets in
(c(@')z,) then z,=Y,NC,(w",2) are C—sets in C,(w",2). Let »: F—C,(»",2) be the projection
onto the first axis. Then X, =z7(z,) are C—sets in the space F. Applying Lemma (5.3.14) to
such sets X, we conclude that there are two different functionsg; g,withg;\A* = 0, g;\B* =
1 for i=1,2. It follows that (g;, ¢) are not separated by X, and hence g; are not separated by the
setsY,,.

For a compact space K, we denote by Ba(C(K),weak), Ba(C(K),t,) the Baire o -

algebras in C(K) endowed with the weak topology, or the pointwise topology, respectively.
Theorem (5.3.15)[213]: (Avil es-Plebanek-Rodr 1guez).

Ba(C(Bw),weak) # Ba(C(Bw),T,) .

Using results from we can also give a simpler proof of the above theorem:

Proof: We shall show that, for any ultra filter g € w*, the measure d, is not Ba(C(Bw), t,)
-measurable. Assume the contrary. Then there exists a countable subset X of Bw such that
dp IS measurable with respect to the o-algebra of subsets Of C(Bw) generated by{d,:x €
X }. Corollary(5.3.5) implies that?lg, vanishes on the closure of X N w*in fw . Take A <
w such that X nw* €A and d,(A) <1. Let E={f € C(fw):f\A =0}. Observe
that ?ZJO\E Is measurable with respect to the ¢ -algebra generated by{é,:x € X N w }, and for
any subset C of B = w\A the characteristic function x;: fw — R belongs to E . Then the
measure v: p(w) — [0,1] defined by

v(Z) =dy(ZNnB) = d,(ZNB) = dy(xzap),
for Z € p(w), is nonzero, Borel-measurable and vanishes on points of w, a con-tradiction

with Proposition (5.3.2).
Note finally that for any compact space K we have the following inclusions

Ba(C(K), Tp) C Borel(C(k),Tp)
N N
Ba(C(K),weak) c Borel(C(k),weak) c Borel(C(K),norm)
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The space K = 2“1 is an example of a nonmetrizable compactum K for which all the five o-
algebras on C(k) are equal, see [214]. From previous results and the proposition below it
follows that all inclusions in the above diagram are strict for the space K = fw . Since fw is
a continuous image of w*, this is also the case for K = w*. [194].
Proposition(5.3.16)[213]: Bor(C(Bw),t,) €. Ba(C(Bw), weak).
Proof: Let{A,: « < w; } be a family of almost disjoint subsets of w . For every a < w; we
pick F, € w* such that A, € F, . Let us consider the set V = {f € C(Bw): f(F,) > 0 for
some a < w; .
ThenV is 7,-open; we shall check that V ¢ Ba(C(Bw),weak) .
Suppose otherwise; the V lies in the o -algebra generated by{ §,,:n € w} and some family
{ Uy:m € w}, where every p, is a probability measure on w*. There is f < w, such
that u,(Az) = 0 for everyn . Let F be the set of all 0 -1-valued functions in C(Bw) which
vanish outside A_ﬁ It follows that the set F N V lies in the ¢ -algebra of subsets of F which is
generated by the restrictions of u,’s and §,’s to F which is simply the g-algebra generated
by &, forn € Ag . On the other hand, F NV = {xz: N € Fg, N S Ag}, a contradiction, since
Fg N 24¢ is not Borel in the Cantor set 2% .
Corollary (5.3.17)[260]: Every basic open set N(c?2,z2,s2%) in E contains a neighborhood
N(o? 22,5'%) where s'? captures z2.
Proof: Indeed, if (4, A + €) is the final pair in s then for any € > 0, using Lemma(5.3.3) we
can find sets A+ 26,4+ 3e € w of asymptotic densit y > e and such that z2(0) <
(A" + 2€)z%(1) € (4" + 3€),2z%(1) S (4" + 3€). Then we can puts’> = s2n (4, 4" +¢),
where A" =AU (A+ 2¢€),A'+ €= (A+¢€) U (A+ 3¢)ande is small enough.
Corollary (5.3.18)[260]: (Avil es-Plebanek-Rodr 1guez).
(A + e)a(C(Bw?),weak) # (A + €)a(C(Bw?),1,) .
Using results from we can also give a simpler proof of the above theorem:
Proof: We shall show that, for any ultra filter g € w?", the measure dg, is not (A +
e)a(C(Bw?),7,) -measurable. Assume the contrary. Then there exists a countable subset X
of Bw? such that c?s{, is measurable with respect to the o-algebra of subsets of C(Bw?)
generated by{é,:x € X }. Corollary(5.3.5) implies that?lso vanishes on the closure of X N
w? in pw? . Take A € w? such that X Nnw? €A and d,(A)<1. Let E={f€
C(Bw?):f\A = 0}. Observe that HP\E IS measurable with respect to the o -algebra
generated by{6,:x € X N w?}, and for any subset C of A+ € = w?\A the characteristic
function x;: fw? — R belongs to E . Then the measure v: p(w?) — [0,1] defined by
v(Z) =dy(Zn(A+ €)= dy(Zn (A+¢€) = dp(Xzaiare)
For Z € p(w?), is nonzero, Borel-measurable and vanishes on points of w?, a con-tradiction
with Proposition (5.3.2).
Note finally that for any compact space K we have the following inclusions
(A+e)a(C(K),t,) < Borel(Ck),tp)
N N
(A+€)a(C(K),weak) c Borel(C(k),weak) c Borel(C(K),norm)
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The space K = 291 jsan example of a nonmetrizable compactum K for which all the five o-
algebras on C(k) are equal, see [214]. From previous results and the proposition below it
follows that all inclusions in the above diagram are strict for the space K = fw? . Since fw?
is a continuous image of w?”, this is also the case for K = w?". [194].

Corollary (5.3.19)[260]: Bor(C((a + €)w?),7,) &. Ba(C((a + €)w?), weak).

Proof: Let {4,: a < w? } be a family of almost disjoint subsets of w? . For every a < w? we
pick F, € w?" such that A, € F, . Let us consider the setV = {f € C((a + €)w?): f(F,) >
0 for some a < w? .

ThenV is 7,-open; we shall check that V ¢ Ba(C((a + €)w?), weak) .

Suppose otherwise; the V lies in the o -algebra generated by{ §,;:n € w?} and some family
{ up:n € w?}, where every p, is a probability measure on w2". There is a + € < w? such
that p,,(A,+.) = 0 for everyn . Let F be the set of all 0 -1-valued functions in C((a +
€)w?) which vanish outside 4,,.. It follows that the set F NV lies in the o -algebra of
subsets of F which is generated by the restrictions of u,’s and §,;’s to F which is simply
the o -algebra generated by 6, for n€ A,,. . On the other hand, FNV = {x5:N €
Fpier N € Ayte}, acontradiction, since F, .. N 24«+¢ is not Borel in the Cantor set 24a+e
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Chapter 6
Factors of Type II;and Ultra Product I1; Factors

We study the results rely on the recent work of loana, Peterson and Popa, who showd
the existence of type II, factors without outer automorphisms. Let M,, be a sequence of finite
factors with dim M,, — oo and denote M = 11 ,M,, their ultraproduct over a free ultrafilter w.
Some related independence properties for subalgebras in ultraproduct II; factors arealso
discussed
Section (6.1): Non-Trivial Finite Index Subfactors

We say that a subfactor N ¢ M of finite index is trivial, if there exists n € N such that
N < M is isomorphic with1 @ N < M, (C) ® N. We show that there exist type II;
factors all of whose finite index sub factors are trivial. An M-M-bimodule M HM1is said to
be bifinite if dim (Hy) <o and dim (MH) < oco. In the language of Cannes’
correspondences, our main theorem then tells that there exist type II, factors M such that
every bifinite M-M-bimodule is trivial, i.e. isomorphic with a direct sum of copies
of ML* (M) .

Such II; factors are very special. Indeed, any automorphism a € Aut(M) gives rise to
an M-M-bimodule H («) on the Hilbert space L?(M) by the formula

x - & =ax)fandé - x = & forallx € M,é € L*(M).

This M-M-bimodule is trivial if and only if « is an inner automorphism. So, absence of non-
trivial finite index subfactors implies absence of outer automorphisms. Further, if p is a
projection in M andm : M — pMp a *isomorphism, one considers analogously the M-M-

bimodule p(M)% L2(pM),,. Hence, absence of non-trivialfinite index subfactors implies
triviality of the fundamental group.

Because of the constructions, the bifinite M-M-bimodules, should be considered as the
generalized symmetries of the 11, factor M. The main statement then becomes that there exist
type 11, factors all of whose generalized symmetries are inner.

In general, computing the outer automorphism group Out (M) of a II, factor M is very
hard. Connes discovered in [221] that Out (M) is countable whenever M is the group von
Neumann algebra of an ICC property (T) group. Only very recently, loana, Peterson and Popa
showd the existence of type II; Factors M with Out (M) trivial, see [223]. Their theorem is an
existence result in the same way as is the main result. We comment on that below. Explicit
examples of 11, factors with trivial outer automo rphism group were constructed by Popa and
[231], using crossed products by generalized Bernoulli actions and relying on the techniques
of Popa’s breakthrough von Neumann strong rigidity results in [226], [227]. Note that in
[231], it is shown as well that any group of finite presentation can be explicitly realized as the
outer autom Orphism group of a II; factor.

Also the fundamental group of a II; factor, introduced by Murray and von Neumann in
[118], is very hard to compute, unless, of course, you deal with a McDuff factor and get R} as
its fundamental group. Connes showd in [221] that the fundamental group of the group von
Neumann algebra of an ICC property (T) group is countable. The first example of a II; factor
with trivial fundamental group was given by Popa in [228], as the group von Neumann
algebra of SL(2,Z) = Z?. Many other such examples are given in [223], [226], [227], [231].
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In [226], Popa constructs type II; factors with an arbitrarily prescribed countable subgroup of
R? as a fundamental group. An alternative construction is given in [223].

The type 11, factors studied are of the form M = R X T, where ' = T}, x I';the free
product of two infinite groups is and I' ™~ R is an action by outer automorphisms on the
hyperfinite II, factor R.

We formulate strong conditions on the groups and the actions involved, that ensure that
all bifinite M-Mbimodules, are trivial. But, we do not give explicit examples of actions that
satisfy all these requirements: as in [223], we rather show the existence of such actions
through a Baire category argument.

The following argument, due to loana, Peterson and Popa [223] is a key ingredient to

show that, under suitable conditions, every bifinite M-M-bimodule is trivial when M = R x
([ * Ty). one first assumes that R € M has the relative property (T). The free product I, *
['; gives rise to a strong deformation property of M.
Combined with the relative property (T) for R € M, this fixes somehow the position of R
inside M. It allows to conclude that any finite index inclusion w : M — M?® can be unitarily
conjugated into one in which 7(R) € R*, see Theorem (6.1.6) and Propositions (6.1.7)
and(6.1.8) .

Throughout, (M, T") denotes a von Neumann algebra M with a faithful normal tracial

state 7. We denote, foralln € N, and all(M,T),

M™M,(C) M.
We use the convention Ny = {1,2,...}. If M is a Il; factor and t > 0, we also introduce the
usual notation M* = pM™p whenever p € M™is a projection with non-normalized trace equal
tot.

We make an extensive use of Popa’s technique of intertwining subalgebras using
bimodules. Let (M, 7") be a von Neumann algebra with a fixed faithful normal tracial state T°.
Let A, B € M be von Neumann subalgebras. We say that A embeds into B inside M and
write

A B
If L2(M) contains a non-zero A-B-subbimodule H that is finitely generated as a right B-
module. We write
f

A <B
M

if for every non-zero projection p € A'n M,L? (pM) contains a non-zero A-B-
subbimodule that is finitely generated as a right B-module.

The normalizer of A € M consists of the unitaries u € U (M) satisfying uAu* = A and is
denoted byN,,(4). We say that A c M is regular if V,(4)" = M.

IfA ¢ (M,T)is a von Neumann subalgebra, we say that « € M quasi-normalizes A
if there exist ..., ay, by,..., by, € M satisfying Aa < }i_;a; Aand aA < Y7L, Ab; . The
set of elements quasinormalizing A is denoted by QN,, (A) and is a unital*j-subalgebra of M
containing A. We call quasinormalizer of A inside M the von Neumann algebra QN,,(A)"”
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generated by the elements quasi-normalizingA. If QN,,(A)" = M, we say that the inclusion
A c M is quasi-regular.
IfA ¢ (M,T)is a von Neumann subalgebra, Jones’ basic construction [225] is denoted by
(M, e,)and definedas the von Neumann algebra acting on L2(M) generated by A and the
orthogonal projection e,) of L?2(4). Note that A commutes with e, and that e xe, =
E (x)e,for allx € M, where E,;: M — A denotes the unique t-preserving conditional
expectation. Equivalently, (M, e,) equals the commutant of the right A-action on L2(M).
If (A, t) is a von Neumann algebra with a fixed faithful normal tracial state tand if H,is a
right A-module, the commutant A’of the right A-action on H is equipped with a canonical
normal faithful semifinite trace Tr that can be characterized as follows:

Tr(T T*) = ©(T*T)whenever T: L?(4) - A:T(éa) = (T &) aforallE e H,a € A.
One defines

dim(Hy) := Tr(1)

and one calls dim(H,) the coupling constant or the relative dimension of the right A-module
(Hy). As such, the definition of dim(H,) depends on the choice of tracial state t on A.
Throughout, either A will be a I1;factor, in which case the coupling constant is canonically
defined, or A will inherit a trace from a natural ambient /1, factor.
For 11, factors, the coupling constant is canonically defined and it is then a complete invariant
of Hilbert A-modules. If A has a non-trivial center, a complete invariant of Hilbert A-
modules can be given in terms of the center-valued trace. We shall only use the following
corollary: if dim(H,) < oo and € > 0, there exists a central projection z € Z(A),n € N
and a projection p € AY such that t(1—2) < ¢ and (Hz), = (pL?(4)®") as A-
modules.

Let A c (M,t). Regarding the basic construction and (M, e,) i as the commutant of
the right A-action on L2(M), we get a natural normal faithful semifinite trace Tr on (M, e,). It
Is characterized by the formula Tr(xey) = t(xy),for all x,y € M.

If vHwm Is an M-M-bimodule and A € M a von Neumann subalgebra, a vector ¢ € H is said
to be A-central if aé = &a foralla € A.
In [228], Popa defined the relative property (T) for an inclusion A ¢ (M, t) of von Neumann
algebra A into the von Neumann algebra M equipped with a faithful normal tracial state t. An
equivalent form of this definition goes as follows. For every € > 0, there exists a finite subset
Fc Mand ad > 0such that every M-M-bimodule that admits a unit vector § with the
property

|(¢,aéb) — t(ab)| <& foralla,b € F
admits an A-central vector &,satisfying [|&, — &l < €

If M is a type II;factor and yHwm an M-M-bimodule, we say that H is bifinite if dim
(vH) < o0 and dim (Hum) <oo . The fusion algebra of M is defined as the set of all bifinite M-
M-bimodules modulo isomorphism of bimodules and is denoted as FAIg (M). Note that FAIg
(M) is equipped with the operations of direct sum and Cannes tensor product, see
V.Appendix B in [220] and the brief review below. One has the obvious notion of an
irreducible element in FAIlg (M), and every element in FAIg(M) is the direct sum of a finite
number of irreducibles.
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Every M-M-bimodule wHym has a contragredient M-M-bimodule wH m. Its carrier

Hilbert space is the adjoint Hilbert space H while its bimodule structure is given by

x & =¢%aand & - a = a*&.
If H and K are bifinite M-M-bimodules, then H and K are disjoint if and only if H ®uK is
disjoint from the trivial bimodule wL? (M) if and only if H ®k Kis disjoint from the trivial
bimodule.
Finally, recall Frobenius reciprocity: if H, K, L € Flag (M), the multiplicity of H in K @wm L
equals the multiplicity of K in H @uL and equals the multiplicity of L in K @uH.
We briefly recall the Connes tensor product. If yHm is an M-M-bimodule, there is a natural
dense subbimodule H < H and H is a W*-M-M-bimodule, meaning that there is an M-
valued scalar product on H. More precisely, H consists of those vectors ¢ € H such that
there exists A > 0 satisfying [|&al| < Allall,

For all a € M. If now yKum is another M-M-bimodule, the Connes tensor product
H®wK is defined as the separation and completion of the algebraic tensor product H ®agK
for the scalar product

(Cl ® E,b ® 77) = <€:<a»b>M77>
The M-M-bimodule structure on H ®a¢K is given by
a-b®$) =ab@sand (b Q@ $) -a=>b & ($a).
When there is no risk for misunderstanding, the tensor product H @uK is sometimes simply
denoted by HK,

In particular, every automorphism a € Aut(M) defines the element H(a) €

FAlg(M) and as such, one considers Out (M) c Flag (M).
Note that every bifinite M-M-bimodule is isomorphic with some H( y). Moreover, if ¢ :
M - pM¥pand 8 : M - gM™q are finite index inclusions, the M-M-bimodules H ()
and H(O) are isomorphic if and only if there exists a unitary u € p(M,,,(C) &
M)q satisfying 8(x) = u*yp(x)u for all x € M. Also note that H(yy) ® MH(0) =
H((id & 0)Y).

A subset F ¢ FAlg(M) is called a fusion subalgebra if F is closed under taking
submodules, direct sums and tensor products. An important role is played by freeness
between fusion subalgebras.

Definition (6.1.1)[218]: Let M be a II; factor. Two fusion subalgebras F;,F, ¢ FAlg(M)
are said to be free if thefollowing two conditions hold.

(i) Every tensor product of non-trivial irreducible bimodules, with factors alternatingly from
F,,and F,is irreducible.

(if) Two tensor products of non-trivial irreducible bimodules, with factors alternatingly from
F,.and F,, are equivalent if and only if they are factor by factor equivalent.

Equivalently, F,,and F,are free if every tensor product of non-trivial irreducible bimodules,
with factors alternatingly from F;,and F,, is disjoint from the trivial bimodule.

Whenever a € Aut (M), we defined the bimodule H (a) € Flag (M). So, if T ™~ M is an
outer action, we can regard I' as a fusion subalgebra of FAIg (M).

Definition (6.1.2)[218]: Let the countable group I act outerly on the II; factor N. The
almost normalizer of ' ~ N inside FAIg(N) is defined as the fusion subalgebra of FAIg(N)
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generated by the bifinite N-N-bimodules that can be realized as an N-N-subbimodules of a
bifinite (N xT) — (N xT') —bimodule.

We show some results on the almost normalizing bimodules for ' ~ N There, the
terminology of bimodules almost normalizing I' ~ N, will become more clear as well.
Lemma(6.1.3)[218]: LetI' ~ N be an outer action on the II;factor N. If [, < T'is a finite
index subgroup, the almost normalizers of I, ™~ N and ' ~ N inside FAIg(N), coincide.
Proof: Tensoring with the obvious inclusion bimodule

Hinei(To, ) —NxT, L2(N X T)psr
and its contragredient, one goes back and forth between bifinite bimodules for N x
[and N < T.

We fix infinite groups [yand I;. We set I' = [, * I[;and take an outer action ' ~ N of
' on the II ;factor N. We set M = N T, with subalgebras M; = N % T;.

We record from [223] the following result. The first statement follows from [388], and the
second one from [223], Theorem (1.1.1).

Theorem(6.1.4)[218]: (loana-Peterson-Popa, [223]). The following results hold.

(i) If Q € M is a von Neumann subalgebra with the relative property (T), there exists i € {0,

1} such that Q IEML"

(i) IFt>0,i € {0, 1} and if Q < M is a von Neumann subalgebra such that Q I\Zth, then
the quasi -normalizer of Q inside M* is contained in M.

Corollary (6.1.5)[218]: Suppose that t > 0 and that Q < M is a subfactor with the relative
property (T) whose quasi-normalizer has finite index in Mtthen Q l\;tN t

Proof: SetM; = N x T;. Replacing Q by Q'/t, we may assume that t = 1. Suppose that
Q EN.. The first statement in (6.1.4) yields i € {0, 1} such that Q IEMi" Take a projection €

N™ , a unital *-homomorphism ¢ : Q - pM*p and a non-zero partial isometry v €
(M1 ,(€C) ® M)p satisfying xv = vp(x) for all x € Q. By construction, the bimodule

YL (M)®™M)y,

Is isomorphic with a sub-bimodule onL2 (M) . Since we are supposing that Q ;N. We get

<
that LP(Q)pM_np Denote by Q, the quasi-normalizer of ¥ (Q) inside pM™p, The second
l

statement of Theorem(6.1.4) implies that Q; < pM'p . But, if Q, denotes the quasi-
normalizer of Q inside M, it is clear that v*Q,, < Q,.Since we assume that Q, has finite
index in M, we arrive at a contradiction.

The following result is a first step towards the main theorem.
Theorem(6.1.6)[218]:  Let I[;and I; be infinite groups, I' = T, * I their free product and
[' ~ N an outer action on the II; factor N. Set M = N X TI'and suppose that N c M has the
relative property (T).
Ift>0and: M — Mtis a finite index, irreducible inclusion, then

< <
ﬂ(N)MtNtanciNtMtn(N)
Proof: By Corollary (6.1.5) , we get that n(N)MtNt.
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Realize M® = pM™p. Since m(M) c M¢® has finite index, we can take a projection p, €
m(M)™, a finite index inclusion ¢ : Mt —» p,m(M)™p, and a non-zero partial is ometry v €
p(Mpm (C©) @ M)p, satisfying xv = vyp(x) forallx € M* .  Write n(M)%:=
p1(M)™p;. Cutting down if necessary, we may assume that E s (v*v) has support p; .

Then, Y(NY) < m(M)S has the relative property (T). The quasi-normalizer of y(N?) inside
m(M)*® contains Y(N*)and hence, is of finite index. By Corollary (6.1.5), we get that

<
P(NY) n(M)S”(N)S' so, we find a projection p, € m(N)*, a unital*-homomorphism 6 :

Y(NY) - p,m(N)*p, and a non-zero partial is ometry w € p; (M, (C) ® n(M))p,
satisfying xw = wl(x) for all x € Y(N?).
Since E s (v*v) has support p;and since w has coefficients in 7(M), it follows that vw =

0. Moreover ,Ntvw c vwr(N)*We have shown that Nt];tn(N).

First of all, Propositions (6.1.7) and(6.1.8) describe the structure of irreducible bifinite
(P x A) — (N xTI) -bimodule containing a bifinite P-N-subbimodule.
The condition of containing a bifinite P-N-subbimodule is of course a very strong one.
Typically, an application of the deformation /rigidity techniques explained vyields the
existence of a P-N-subbimodule of finite N-dimension and the existence of another P-N-
subbimodule of finite P-dimension. In Proposition (6.1.9), we show that in good cases this
suffices to get the existence of a bifinite P-N-subbimodule.

Note that Proposition(6.1.8) is a generalization of Lemma 8.4 in [223], but we avoid
the use of Connes’ result about vanishing of 1-cocycles for finite group actions.
Proposition (6.1.7)[218]: Let M, be a II, factor with regular subfactor N. Suppose that ' ~
N is an outer action of the ICC group I" on thell, factor N. Let H be an irreducible bifinite
My(N > I') —bimodule containing abifinite N, — N subbimodule.
Then, there exists a projection p € N™ and an irreducible finite index inclusiony : M —
p(N x I')"p satisfying
(i) H= H®) as My — (N > I')-bimodules;
(if) Y(Ny) < pN™p and this inclusion has finite index;
(iii) The relative commutant p(N > I')"pN Y (N,)'equals pN™p N Y (N,)'.
Proof: Let H be an irreducible bifinite M, = (N > I') -bimodule containing a bifinite N, —
N subbimodule. Since N © N x T is irreducible, the von Neumann algebra A consisting of
M, — N-bimodular operators on H is finite-dimensional. Since the elements of A are M -
modular, we write A as acting on the right on H.
Take an irreducible bifinite N, — N -subbimodule K c H. Define H as the closed linear span
of My, KA. We denote by z the orthogonal projection onto H and observe that z € Z(A).
When everv € U(A),Kv = K as N, — N-bimodules. So, the regularity of N, € M, ensures
that H is a direct sum of N, — N -bimodules isomorphic with one of the uK foru € Ny, (N).

Since Z(A) is a finite-dimensional abelian algebra normalized by the unitaries u,, g €
I', we can define the finite index subgroup I, < T consisting of g € I" such that z and
ug commute. Hence, for g € Iy, we have Ku, < #, implying that there exists u € Ny (Ny)
satisfying Ku, = uK as N-N-bimodules. Next define the subset I c T as

I:={g €T |Kuy; =K as Ny — N — bimodules } .

199



It is easily checked that I is globally normalized by the elements of I,. Moreover, ifg € I,
we have that H (o) is contained in K Qn, K, implying that 1 is finite. The ICC property of I
yields that | = {e}.

SetM = N x I'. Take an irreducible finite index inclusion 8 : M, - gM™q such
that H = H(0) as M, — M-bimodules.

The presence of K c H is then translated to the existence of a non-zero partial isometry
v € q(Mp, (C) ® M)p, and an irreducible finite index inclusiony,: Ny, — p; N™p; such
that
0(x)v =vy,(x) forallx € N,,
K = H(y;)as Ny — N — bimodules

We claim that p; M™ p;N;(Ny)' = Cp, . Indeed, if Y erxsu, with x, €
p1N™ o,(p1) commutes with y; (N), it follows that

Xgsg@: (V) =¥y (y)xgforallgeG,yeN.

%99 (Y1()) = Y1(¥)x, forall g €T,y € Ny
So, whenever x, # 0,Ku; = K Qy H(o,) = K and hence g = e. It follows that our relative

commutant lives inside p, N™*p;and so, is trivial by the irreducibility of ¥; (N,) < p;N"p;.
The claim is shown.

In particular, we conclude that v*v = p;and that vv*1lis a minimal projection in gM™q N
O(Ny)'.Also,v*8(Ny)v < p;N™p, and this is a finite index inclusion.

Set B = gM™gqn6(N,)'. By irreducibility of 6(M,) € gM™q, we know that Ad
6 (N, (No)) yields an ergodic action on B. Since B admits the minimal projection vv*, B is
finite-dimensional. Denote by z the central support of vv* in B. Let (f;;) be matrix units
forzB with foo = vv*. Take a finite set of ux € Ny (Ny) such that X, u,zu, = q. Finally,
take partial isometries v, in N (enlarging n if necessary) satisfying v, vy, = p, for all k, i
and p = Y Vg, Vi, Projection in N™ Defining

W= figuvi and i My~ p(N X T)'p: ) = w* 0w
ki
We are done.
Proposition (6.1.8)[218]: LetA ﬂP and I Z N be outer actions of the ICC groups 4,T on

the II, factors P, N.
Suppose that H is a bifinite (P % A) — (N x I')-bimodule containing a bifinite P-N-
subbimodule.
Then there exists an irreducible finite index inclusiony : P x A = p(N xI)"pwithp €
N™ and an isomorphism § : A — T}, between finite index subgroups of 4, T, satisfying
() H = H(),
(i)Y (P)pN™p p and this is a finite index inclusion satisfying p(N x I')"p n Y(P)' =
pN"p NY(P)";
(iii) for some non-zero projection z € Z(pN™p NnyY(P)") commuting with Y(P x A, we
have.

zz,[)(ug) = Xg(g)Us(g)fOr unitaries x; € zN"o4(z) whens € I,
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Proof: By Proposition (6.1.7), we get H = H(y)wherey: P x A - p(N x I)p is a
finite index inclusion satisfying p € N™,y(P) € pN™p a finite index inclusion and
p(N xD)"p N ¢p(P) =pN"p NnY(P)
Let p,be a minimal projection in the finite dimensional algebra pN™"p N y/(P)"and set
Yo(x) = Y(x)p for x € P. Define K = H(y,) as a bifinite P-N-bimodule. As in the
beginning of the proof of Proposition (6.1.7), we get finite index subgroups 4, < A and I, <
I" defined by

Ao:= {g € A|3h € G,H(py)K = KH(0p)},

;= {he I'|3g €4 ,KH(oy) = H(py)K},
and an isomorphism & : A, — T} such that H(p,)K = KH(os(c))forallg € A,.

Letz, € Z(Y(P)' n pN™p) be the central support of p, .Take g € A,. It follows that

Y (pg (. )) zoands 054 (P (+)z,) define isomorphic P-N bimodules. So, there exists a unitary

V € 05(4)(20)N"z such that v (p,(x)) = 055 (W (x))v for all x € P. It follows that
U4 d(uy) commutes withyp(P) and hence, belongs topN™ p. It follows that zy(u,) €
usgyN™ forall g € A,. But then.

(@ (uh) 2o ()i (ug) = (209 (un))” (2o (ttng))
Belongs to us,yN™ as well, for all h, g € Ay. Setting z = Vypea, W (up) 2o (uy), we are
done.

The second condition in the next proposition is quite artificial. In the application, one
might as well suppose that A M is a quasi-regular inclusion, i.e. M = QN (A)".
Elsewhere, we plan another application of the proposition: there it is known that whenever
H c L*>(M,t) is an A-A-subbimodule with dim(H,) < oo, thenactually H c L2(A).
Proposition (6.1.9)[218]: Let(M, 1) (M, t) be avon Neumann algebra with faithful normal
tracial state T . Suppose that A, B ¢ M are von Neumann subalgebras that satisfy the
following conditions.

o< !
(i)A ,,Band B<A
M M
(i) If Hc L>(M,t) . is an A-A-subbimodule with dim (H;) <o Then, H c
L2(QNy (A)").
Then there exists a B-A-subbimodule k ¢ L*(M, t)satisfying
dim (g K) < o0 and dim (K a) <co,
So, there exists a projection p € M,, (C) @ A, a non-zero partial isometry v €
(M,,,(C)®M)p and a unital *-homomorphism 6 : B — pA™ p Satisfying
0(B) c pA™ p has finite index, and bv = v@(b) forallb € B.
In the above statement, all dimensions are with respect to the restriction of 7 to A and B. In
particular, the index of 8(B) c pA™p, is defined as dim(L?(pA™p)B), where the right B-
module action is through 0.
Proof: Denote by J the anti-unitary operator on L*(M,t) given by Jx = x*. Then,
J(M,e,) N B'] =(M,eg)n A’. So, we get two normal faithful traces on (M,e,) N B': one
denoted by Tr, and defined by restricting the trace on (M, e,)and the other denoted by Tr and
obtained by applying the previous formula and restricting the trace on (M, e,). Define
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p =V {py| poOprojectionin (M, e,) N B" with Try (p,) < o},
q =V{qo| qo0projectionin (M, e,) N B' with Trg (qy) < oo}, (1)

It suffices to show that pq # 0. Indeed, approximating p and g, we get p, with Tr,(py) <
oo and q, with Trg (qy) < oo, satisfying p,q, # 0. Taking a spectral projection of the
positive operator ¢, we arrive at an orthogonal projection r € (M,e,) N B’ satisfying
Try(r), Trg(r) < oo. Taking K = rL*(M,t), thelemma is showd.
Take non-zero partial isometries v,w € M, ,,(C) ® M and, possibly non-unital,
*-homomorphisms p: A - B™, 6 : B — A"such that
av = vp(a),bw = wl(b) foralla € A,b € B.
f

Since B< A, we may assume that v(1 @ w) # 0. Note thatww* € M n B’, so that we

M
may assume thatv = v(1 @ ww™). By construction, the right A-module generated by the

(finitely many) coefficients of v(1 ® w), is also a left A-module. Our assumptions imply that
the coefficients of v(1 @ w) belong to QN,,(A)". With p defined by (1), it is easily checked
that Hy: = pL*(M, t) is a right QN,,(4)"-module. By construction,
the coefficients of w belong to H, and hence, the coefficients of v* = w(v(1 & w))*
belong to H as well. By construction, the coefficients of v*belong to qL?(M, t) So, we have
shown that pg # 0.
Theorem(6.1.10)[218]: Let I, I} be infinite groups acting outerly on the II; factor N. Make
the following assumptions.
(i) The groups Iy, I';, Z are two by two not virtually isomorphic.
(i) The groups Iy, I;are not virtually is omorphic to a non-trivial free product.
(iii) Denote by F the fusion subalgebra of FAIg (N) consisting of the bifinite N-N-bimodules
that almost normalize I' ~ N. Then, F and I';are free as fusion subalgebras of FAIg (N). (See
Definitions (6.1.1) and(6.1.2) for relevant terminology.)
IV) N ©¢ N x T, lhas the relative property (T).
SetM = N x (I, *Iy) If yHw is a bifinite M-M-bimodule, there exists a finite-
dimensional unitary representation 8 : [, * [ — U(n), such that yHwm is isomorphic with the
M-M-bimodule H,.,, (8) defined below.

The M-M-bimodule H,.., (0) is defined as follows. The Hilbert space is given by
C" ® L?> (M) and

(xug) - § = (0(9) ® xug)§ands -y = (1 ® y)

Forall¢ eC*"® L*(M),g € T, xI;,x € Nandy € M.
A given bifinite M-M-bimodule is of the form H(y), whereyp : N XT = (N xI)tis a
finite index inclusion will imply that we may assume that ¢y (N) < Nt and that the latter is a
finite index inclusion. This allows to show Theorems (6.1.11) and (6.1.10). Theorem (6.1.11)
follows once we have shown the existence of groups Iy, I; without nontrivial finite-
dimensional unitary representations, and actions of these groups on the hyperfinite II; factor
R satisfying all conditions in Theorem (6.1.10). In order to show this existence, we have to
establish the following result: if F,and F,are countable fusion subalgebras of FAIg(R), where
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R is the hyperfinite 11, factor, then the set « € Aut(R) such that aF;a tand F, are free, is a
I" -dense subset of Aut(R). This last result generalizes A.3.2 in [223].
Proof: Write and '=T,*I;and M = N x G . Let H be a bifinite M-M-bimodal.
Combining Theorem(6.1.6), Proposition(6.1.9) and Proposition (6.1.8), we get H = H(y)
wherey : M — pM™"p is an irreducible finite index inclusion satisfying
()p € N*and ¥ (N) < pN"p afinite index inclusion,
(i) pM™ n P(N)' = pN™p N P(N)',
(i) Y(ug)z = xs¢g)uscq) for all g € A, where A < T'is a finite index subgroup, § : 4 —
I" an injective homomorphism with finite index image, x,a unitary in zN"g,(z) for all h €
§(A) and z a central projection in pN™p N ¥(N)'commuting with (N x A).
Denote by K the bifinite N-N-bimodule defined by the inclusion N - zN"z: x:x —
Y(x)z. We show that K is a multiple the trivial N-N-bimodule, which will almost end the
proof of the theorem.

Set A;:= TI; N Aand note that A; is a finite index subgroup of I;. We assumed that
[y, I1, Z have no isomorphic finite index subgroups and that the finite index subgroups of
I, Iy, are freely indecomposable.

Hence, the Kurosh theorem implies that d(4;) is a finite index subgroup of s;I;s;* for
some sps; €T
Unitary conjugating with u, from the beginning, we may assume that §(4,) is a finite index
subgroup of I, and that §(A,) is a finite index subgroup of sIjs~!. Again unitary
conjugating, we may assume that eithers = eors € (I, — {e}) --- (I, — {e}).
So, the map N x Ay = z(N X Ay)"*z:y — P(y)z defines a bifinite (N x Ay) — (N >
Ap)-bimodule that contains the N-N-bimodule K. By Lemma (6.1.3), K is almost normalizing
[, ™~ N By our assumptions K UT,, and I; are free inside FAIg(N). Writing for all g €
Ay,d(g) = sn(g)s™'forn(g) € I, and s as above, the formula Y(u,)z =
Xs(g)Us(g)implies that H(a,)K = KH(0 s 4ys-1) for every g € A,. Given the form of s, this
Is acontradiction with the freeness of K U I, and I}, unless K is a multiple of the trivial N-
N-bimodule.
Our claim is shown and we find a non-zero partial is ometry v € p(M, 1(C) ® N)
satisfying

Y(x)v = vx forallx € N. (2)

Then, v*v = 1and (2) remains true replacing v by qy(u,)vu, whenever g €T'and g €
pN™p nyY(N)'. It follows that we can find a unitary w € p(M™ k(C) @ N) satisfying
wPx)w = 1 ® x for all x € N. It is now an exercise to check that w*y(uy)w =
6(g9) & u, for some representation 6 : I' > U(k).
Finally, we show the existence of groups and actions satisfying all the requirements in
Theorem (6.1.10) and moreover such that the groups do not admit finite-dimensional unitary
representations.
Theorem (6.1.11)[218]: There exist II; factors M with trivial fusion algebra: every bifinite
M-M-bimodule is isomorphic with y(L?(M)®™),,1 for somen € N.
In particular, M has no outer automorphisms, has trivial fundamental group and only has
trivial finite index subfactors: if N c M is a finite index subfactor, (N € M)=(1 ® N c
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M(C) ® N) for somen € N. In particular, every finite index irreducible subfactor of M
equals M.

The I1; factors in the above theorem are of the form M = R X T, where R is the hyperfinite
I, factor, T is the free product of two groups without non-trivial finite dimensional unitary
representations and the outer action I' ™~ N satisfies the following specific conditions.

Proof : We have to show that there exist infinite groups I, I' together with outer actions on
the hyper finite I1; factor R such that all conditions of Theorem (6.1.10) are satisfied and such
that all finite dimensional unitary representations of I, and I" are trivial.

Consider the group A, of finite even permutations ofN. It is well known that every finite
dimensional unitary representation of A is trivial. Consider Z/3Z < A, identifying 1 and
the cyclic permutation of {0, 1, 2}. Finally, consider Z/3Z < SL(3,Z) identifying 1 and the

0 0 1
matrix (1 0 0) We then define
0 1 0

*

As stated above, I';does not have non-trivial finite dimensional unitary representations. If r :
[, = U(n) is a finite dimensional unitary representation,A,, € Ker m . In particular,. Z/
3Z < Kerm Since the smallest normal subgroup of SL(3,Z) containing Z/3Z, is the whole
of SL(3,Z), it follows that Ker m = Tj,.

In particular, I, and I; do not have non-trivial finite index subgroups. Both SL(3,Z)
and A, are freely indecomposable. Then, the Kurosh theorem implies that T}, is freely
indecomposable as well.

We next claim that there exists an outer action of [}, on the hyper finite /I; factor R
such that R © R T, has the relative property (T). First take an outer action of SL(3,Z)on
R such that R € R x SL(3,Z) has the relative property (T). A way of doing so, goes as
follows. Consider the semi-direct product SL(3,Z) x (Z3 x Z3), where A- (x,y) =
(Ax, (A~ 1)ty) for all A € SL(3,Z) and x,y € Z3. It is clear that Z3 x Z3 is a subgroup
with the relative property (T). Take an SL(3,Z) -invariant non-degenerate 2-cocycle ® on
Z3 x Z3. We then get the required action of SL(3,Z) on R = L, (Z3 x Z3). Next, take any
outer action of A,, on R. By Cones' uniqueness theorem for outer actions of finite cyclic
groups on R (see [222]), we may assume that the actions of Z/3Z < A, A8 and Z/3Z c
SL(3,Z) coincide. Hence, we get an action of I, on R. Further modifying the action of A,
by applying Proposition (6.1.14), we have shown that there exists an outer action of I, on R
that extends the SL(3,Z) action. Then, R © R x T, still has the relative property (T).

Finally, take any outer action of I'; on the hyper finite /I, factor R. Denote by F the
fusion subalgebra of Flag (R) generated by the bifinite R-R-bimodules almost normalizing
[, ™ R. By Lemma (6.1.12) below, F is countable. It follows from Theorem (6.1.13) below
that there exists an automorphism a € Aut(R) such that F and al;a™! are free in the sense
of Definition (6.1.1) . Replacing I'; by al’;a™1, all conditions of Theorem(6.1.10) are fulfilled
and moreover, I only has trivial finite dimensional unitary representations. So, we are done.
Lemma(6.1.12)[218]: Let N be a II; factor and G ™~ N an outer action suchthat N c N x
I' has the relative property (T). Then, the almost normalizer of I' ~ N in FAIlg (N) (in the
sense of Definition (6.1.2) is countable.
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Proof: SetM = N x I'. By contradiction and countability of I and N, it is sufficient to
show the following: if n € Nyand if Y;: M — p;M"p,; defines an uncountable family of
bifinite M-M-bimodules H; containingnon-zero irreducible bifinite N-N-bimodule K; c H;
there existi # jand g,h € I suchthatK; = H(o,)K;H(0y,), as N-N-bimodules.

Take e > 0and F < M finite such that every M-M-bimodule H that admits a vector ¢ € H
with the properties 1 — e < || €|l < 1and |(¢,aéb) — t(ab)| < € for all a, b € F,
actually admits a non-zero N-central vector.

Assume for convenience that 1 € F and consider the ; as non-unital
homomorphisms M — M". By the pigeon hole principle, we can find i # j such that
i) — 1,1)]-(x)||2 < ¢llg;ll, for allx € F. Consider the M-M-bimodule p;L*(M™)p ; with
left action given by i; and right action by ; . The vector ¢ = [|p;|I>" p;p;. satisfies the
above conditions and we conclude that p;L? (M™),; contains a non-zero N-central vector. It
follows that there exist irreducible N-N-subbimodules k; ¢ H; and K; c H; with K; =
f('jas N — N bimodules. To conclude to proof, it suffices to observe that for every i, H; as an
N-N-bimodule is a direct sum of irreducible N-N-bimodules isomorphic
with H(o,)K;H(0y),g9,h € T.

We show the following crucial result: whenever F,,F, are countable fusion
subalgebras of FAIlg(R), where R denotes the hyperfinite II; factor, there exists an
automorphism a € Aut(R) such that

Fl:= H(a—1)F,H(a) and F,

are free. In [219], this implies that any two hyperfinite I1; nite index subfactors admit a
hyperfinite realization of their free composition (see page 94 in [219].
Theorem(6.1.13)[218]: Let R be the hyperfinite 11, factor. LetF,,F,be countable fusion
algebras of bifinite R-Rbimodules. Then,

{a € Aut(R) | F{ and F,are free}
Is a G dense subset of Aut(R).
Recall that if yHw is an M-M-bimodule and A € M a von Neumann subalgebra, a vector & €
H is said to be A-central if aé = &a for all a € A. Note that if p denotes the orthogonal
projection onto the subspace of A-central vectors, p¢ is precisely the element of minimal
norm in the closed convex hull co{uéu*|u € U(A)}.
In what follows, we make use of the following special property for a bifinite bimodules rH r
over the hyperfinite II, factor R. Fix a free ultrafilter ® on N and consider the ultrapower
algebra R®. We claim that there exists n € N and an R-R-bimodular isometric embeddingV :
H — LRE(R®)®" in to the n-fold direct sum of RY(R®), Denoting by # the W*-
bimodule of bounded vectors in H, we can take VH < M, ;(C)®R®. To show the existence
of such an embedding, take Y : R — pR™p such that H = H(y). We can take a partial
isometry A € M, (C) @ R® satisfying A"A = pand (1 @ x)A = AyY(x) for all x € R.
It then suffices to define

p(L*(R)®™) - L*(R*)P™ ¢ w AS.
Moreover, rRHg does not contain the trivial bimodule if and only if(id @ Eprnre)(V E) =
0 forallé € H.
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We are now ready to show Theorem (6.1.13) and the proof will be based on the technical
Proposition (6.1.17) below.
Proof: Suppose that Hy, ..., Hy are irreducible bifinite R-R-bimodules, with H; non-trivial if
1 <j < 2k — 1. When a € Aut(R) and H € FAlg(R), we write H*:= H(a"Y)HH(a)
and define
K(a) := HoH{'H,Hg - - - Hyx 1 Hy.

We have to show that

W := {a € Aut(R) | K(a) is disjoint from the trivial bimodule}
Is a Gs dense subset of Aut (R).

Let H; c H; denote the W*-M-M-bimodules that sit densely in side H;. Take n sufficiently
large and take isometric embeddings

Vi Hy > L*(R®)®" with V; 3; € M, ;(C)R®.
Denote by pfe(,;?r the orthogonal projection onto the R-central vectors of RX (a)z. When ever
& € H;and € > 0, we define

W&, ..., ¢u; €)= {a € Aut(R) |
We show three statements.
(i). Every W(¢&,, ..., &ox; €) isopen in Aut(R).
(if). Every W(¢&,, ..., &, €) isdense in Aut(R).
(iii). Taking the intersection of W (&,...,&,; ) where m runs through Nyand the &; run
through a countable [|. ||,-dense subset of #;, we precisely obtain W.
By the Baire category theorem, these statements together show that Wis a G
dense subset of Aut(R). To show the first statement, observe that W (& (&, ..., &k €) is the
union of all

Protr (G0 ® -+ ® &) < &)

n
a € aut(R), ||Y nui G ® - ® £ <e
i=1 k(a)
where n runs through N, . where x4, ...... ,~p, runs through all n-tuples of positive real

numbers with sum 1 and where u,, ..., u runs through all n-tuples of unitaries in R. All these
sets are easily seen to be open.

To show the second statement, setV; &; = y; = (v;(1),...,y;(n))t € M, ;(C) ® R®. Then,
extending an automorphism of R to an automorphism of R“in the canonical way, we have.

[P, @ @ ® &
= Z EanRw||}’o(i0)“(3’1(i1))}’2(i2)----“(YZk—1(k2k—1))3’2k”Z (3)

lgymizk=1
Fix B € Aut(R). We show that g is in the closure of W(£O,...,&5;€) Write R as the
infinite tensor product of 2 by 2 matrices, yielding R = M,s(C) @ R,. It is sufficient to
show that, for every s € N, there exists a unitary u € Rs such that (Ad uw)f €
W (&, ..., & €). The existence of u follows combining (3), and the following observations.
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(i) If H; is disjoint from the trivial bimodule and f € Aut(R) is arbitrary, Hf does not admit
non-zero R-central vectors either and hence, does not even admit non-zero R - central
vectors. So,
ERsNR®(B(:i())) = 0

Forallj=1,...n,allsand all 8 € Aut(R).
(it) By construction, the elements S(y;(j)) € R® quasi-normalize R for all § € Aut(R).
Hence, they quasi-normalize R, for all s.
(iii) We apply Proposition (6.1.17) to the subfactor R, of the von Neumann algebra generated
by R, the y,;(j) and B(¥2i+1())-
It remains to show the third statement. Ifa € W, thena € W(§,,...,&,y; ) for all §;and
e > 0. Conversely, if a belongs to the intersection stated above, we have

Prontr G ® - ® &) = 0
for dense families of §; € H; . But this implies that pfe(,‘fgr = O0andsoa€W.
We have the following variant of Theorem (6.1.13) that we use in the proof of
Theorem(6.1.11) .
Proposition(6.1.14)[218]:  Suppose that the countable groups Iy, I;have a common finite

subgroup K. Let l“ol;zl“1 act on the hyperfinite I1; factor R. Suppose that both I, and I’ for act

outerly. Denote by Autg (R) the automorphisms of R that commute with all the
automorphisms in K. Then,

{a € Autyg (R) | The subgroups I'yand al;a~! of Out(R) are free with amalgamation over
K} is a G dense subset of Auty (R).

Proof: One can almost entirely copy the proof of Theorem(6.1.13) , using the following
observation. Let a € Aut(R) be such that oy« is outer for every k € K. Denote by RX the fixed
point algebra of K. We claim that the R-R-bimodule H (a) has no non-zero RKc R implies
that there exists a unitary v € R such that va(x)v* = x- for all x € RX. By Jones’
uniqueness theorem for outer actions of finite groups (see [224]), we may assume that the
action of K is dual and conclude that (Ad v)a = g for some k € K. This contradicts our
assumption and shows that H(a) has no non-zero R¥ -central vectors. Writing R¥ as an
infinite tensor product of 2 by 2 matrices, we get RR¥ = M,k (C)®Ry.

If A € R® is a unitary implementing a, it follows as in the proof of(6.1.13) that Eg: N
R®(A) = 0. this is again the starting point to apply Proposition(6.1.17) .

The following is the crucial result to obtain Theorem(6.1.13) . Most of the proof is taken
almost literally from Lemmas 1.2,1.3 and 1.4 in [260]. We repeat the argument, since slight
modifications are needed: in [230], the relative commutant N' n M is assumed to be finite-
dimensional, while we assume that N is a factor and the inclusion N c M quasi-regular. This
forces us to show the extra below.

Lemma(6.1.15)[218]: Let (M, t) be a von Neumann algebra with faithful normal tracial
state t. Let N € M be a von Neumann subalgebra. Suppose that N is a factor of type II; and
that N is quasi-regular in M. Let f € N be a non-zero projection and V < M a finite subset
such that Eyr~y (fAf) = OforallA € V.

For every ¢ > 0 and every K € N, there exists a partial isometry v € fNf satisfying
vv* =v'y, t(vv*) = t(f)/4 and
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||E,\,,nM(onklAlv"ZA2 o pkn An”2 <¢
foralll < n < K,1 < |kj| £ K, Ay, A, €V U {1}and A, ..., 4,1 EV.
Here, and in what follows, we use the convention that vy:= vv*and v=*:= (v*)fork €
N,, whenever v isa partial isometry satisfying vv* = v*v.
Proof: We may assume that ||A|| < 1forall A € V. Since ||z||5 < ||zl ||z]l, , we show the
following: for every ¢ > 0 and every K € N, , there exists a partial isometry v € fNf such
that vv* = v*v, t(vv*) = t(f)/4 and

|Eninn (AgvFr A v*2 A, - - - vFn An”1 <¢€
forall1 < n < K,1 < |kj| £ K,Ap,A, €V U {1}andA, - v,_1 E V.
Fix e> 0 and K € Ny.Letgy > 0 and define g, = 2™"1¢e,_;,up to & take &, small
enough such that e, < €. Define | as the set of partial isometries v € fNf satisfying vv* =
v*vand

|Eniam (Aov¥ 2 4,v¥24, - - - vFn Ay || < ent(vv?)

For all 1<n<K,1< |k <K,A,,....A,_1€ V,Ap € V U fV U {1} and A, €
VuVfu{1}L

Order I by inclusion of partial isometries. By Zorn’s lemma, take a maximal element v € [
and setp = vv*. It might be that v = 0. If t(p) = ©(f)/4, we are done. Otherwise t(p) <
t(f)/4 and we setp, := f — p. Note that t(p)/t(p;) = 1/3. Write M;: = p,;Mp,, with
normalized tracial state ¢t; and corresponding norms |||y, and |||l u, - Applying Theorem
A.1.4in [229] to the inclusion p;Np, € p;Mp, , take a non-zero projection g € p; Np; such
that

”qxq - E(N’nM)p1 (P1XP1)Q||2M = €0||Q||2,M1
»viq
for all x = Ajv¥r--- vhs1,4.,and all 1 < s < K,1 < |k;|< Kand 4y,...., A, E V.

We shall show that aunitary w € gqNgq can be chosen in such a way thatv + w € [. This
then contradicts the maximality of v.

Letx = A;vfr ... vhs-14,withl < s < K,1 < |k;| = Kand 4,,....,A; € V. Observe
that

||qxq - E(N’nM)Pl(19195291)61”LM1 < ||qxq - E(I\/’m\/l)1>1(291XP1)CI||2’Ml||CI||2,M1 < &t1(q)
One checks that|| Ew'nmp, (P1xp1)CI||LM1 < E(N'nM)Pl(xpl)||1T1(Q)/T(p1)- On the other
hand,
” E(N'nM)Pl(xpl)”l ||E(N’nM)P1(xf)||1 + “l‘:'(N’nM)(xP)”1
= ”E(N’nM) (xf)||1||E(N'nM)P1 (vxv*) < (g1 + gs+1)t(p)||1-
It follows that || Eqy'ap, (plxpl)q“LMl < 7,(q)(g5_1 + &541)/3 Altogether, we conclude
that

&g T
lgxqll, < 217D, @
By Lemma (6.1.16) below, take a unitary w € gNgq such that
: en7(q)
”EN’nM(Akal "'Aj—lwk]Aj "'vknAn)“l =< n4-n
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Foralll < n <K/ 1<j<nl1< |k|<KA,...,.4,.1€VUVfU({l}Land A, €
VuVfu {1}
Claim: the partial isometry v + w belongs to I, contradicting the maximality of v. To show
the claim, take 1< n < K,1 <|k;| < K, A4,..., A1 € V,Ap € V U fV U {1}
andA4,, € V U Vf U {1}. We develop the sums in the expression

Eyoy(Ao(WFr + wk) A, (v + wk2)A, ... (v + wk2)A4,). (5)
(i) There is one term with only v’'s appearing. Its |[|-]|; -norm is bounded bye,t(p),
becausev € I.
(if) There are n terms with w appearing at one place. Each term has it s |[|-[|; . bounded by

22 Altogether, their ||-[1,-norm is bounded by ent(q)/4.

(iii) There is 1 term with w appearing in position 1 and position n and with v’s in the other
positions. This term contains the subexpression
quvkz e vkn—lAn_lq .

Because of (4), thek]|-||;-norm of this term is bounded by ¢,t(q)/2.
(iii) There are less than 2™-1n terms where w appears on at least two positions that are not
exactly the positions 1, n. In every such term, we have the subexpression

qu.vki+1 c e vijjq .
withl<i<j<n-1and0 <j—i<n-— 3.By(4), the |||y -norm of this
subexpression is bounded by ¢,,_; t(q)/2. It follows that the sum of all the terms of this type
has ||-||;-norm bounded by 2™ 1¢e, _; t(q) < = &,t(q)/4
It follows that the ||-]|;.-norm of the expression in (5) is bounded by &, (t(p) + t©(q)) =
e t(p + q), provingthatv + w € [.
Lemma(6.1.16)[218]: Let (M, t) be a von Neumann algebra with faithful normal tracial state.
Let N € M be a von Neumann subalgebra. Suppose that N is a factor of type II, and that N is
quasi-regular in M. If w is a bounded sequence in N that converges weakly to 0, then

|E N (@awpb)]l; = 0
forall a, b € M.
Proof: Step 1. Leta € M with |la || £ 1. The sequence ||E 4y (aw,)]||, converges to O,
whenever w is a bounded sequence in N that converges weakly to zero. Indeed,
WHtingE vy = EnramOE yy(n'any, We may assume thata € N v (N'n M). So, we may
assume that a = xy withx € N'n M and y € N. Because N is a factor, Ey,ny(2) =
t(z)1forall z € N. Hence, Ey,ny(ywy)x = t(yw,)x and this last sequence converges to
Oin -l
Step 2. Let & € L*(M). The sequence ||Ey,nm (Ewy) ||, converges to 0, whenever w,, is a
bounded sequence in N that converges weakly to zero. This follows immediately from Step 1.
Step 3, proof of the lemma. Define K as the closure of NbN in L?(M).Since N c M is
quasiregular, we may assume that dim(Ky) < oo We then find¢ € M, , (C) ® K, and a,
possibly non-until, *-homomorphism ¢ : N - M, (C)®N .such that x¢ = &p(x) for all
x € N and such that K equals the closure of £(M,,; (C) @ N). So, we may assume that
b = &d forsomed € M, ;(C) ® N.Butthen, aw,b = a&p(w,)d.
Since Y (w,,)is a bounded sequence in (M, ; (C) & N) that converges weakly to zero, the
lemma follows from Step 2.

209



Proposition (6.1.17)[218]: Let (M, t) be a von Neumann algebra with faithful normal tracial
state t. Let N € M be a von Neumann subalgebra. Suppose that N is a factor of type II; and
that N is quasi-regular in M. Let V' < M be a finite subset such that E y+~,,(A) = 0 forall A
EV.
Foreverye > 0Oandevery K € N, there exists a unitary u € N such that

|Enrom (Aourt A uk?4, - - - u"""An)”2 <e¢
forall1 < n < K,1 < |kj| < K,ApA, €V U {1}andA44,...,A,_1 E V.
Proposition (6.1.17) is shown below, after the following preliminary resulit.
Proof: Let N c (M, t) be a quasi-regular inclusion. Suppose that N is a II; factor.
Claim 1. Let o be a free ultrafilter on N and f € N® a non-zero projection. If V ¢ N®isa
countable set with Ey,npye(fxf) = 0 for all x € V, there exists a non-zero partial
isometry v € fN¢f satisfying vv* = v*v and Ey,nmy«(y) = 0 for every product y with
factors alternatingly from V and {v*| k € Z,k # 0}.
Proof : Write f = (f;,) where f,, a non-zero projection in N for every n. Write V. = {x|k €
N} and choose representatives x;,, = (xg, n), such that Ey,qy (fnXknfn) = 0 forall k, n. By
Lemma (6.1.15), take partial isometries v,, € f,,Nf,, such that v, v, = v, v, t(v,v;) =
t(f) /4 and ||[Ey oy Il < 1/n whenever y is a product of at most 2n + 1 factors
alternatingly from {x, ,,,..., X, »} and {v¥| 1 < |k| < n}.
Then, v := (v,) does the job.
Claim 2. Let o be a free ultrafilter on Nand V. c M® a countable set with E y,npye (x) =
0 for all x € V. There exists a unitary u € N satisfying Ey,ny«(y) = 0 for every
product y with factors alternatingly from V and {uX | k € Z,k # 0}.
Proof: Define | as the set of partial isometries v € N® satisfying vv* = v*v and
Envinmye(y) = Owhenever y is a product with factors alternatingly from V and (k| k €
Z,k # 0}. By Zorn’s lemma, I admits a maximal element v. If v is a unitary, we are done.
Otherwise, vv* = p < landwesetf = 1 — p.
Define W as the (countable) set of products y with factors alternatingly from V and {v*| k €
Z,k #+ 0} and such that the product y starts and ends with a factor from V. Observe that
Eninmye (fyf) = O0forally € W. Indeed,

E(NrnM)w(fJ’f) = E(NrnM)“’()’) - E(NInM)“’(yp) =0 - E(N:nM)w(VyV*) = 0;.
Using Claim 1, take a non-zero partial isometry w € fN®f satisfyingww* = ww* and
En'amnye (y) = Ofor every product y with factors alternatingly from W and (wk|k € Z,k +
0}. Then,v + w € I, contradicting
the maximality of v.

Proof: Consider V.c M c M with Eyquy(x) =0for all x € V.. Claim 2 yields a
unitary u € N¢ such that Ey/qpne(y) = 0 for every product y with factors alternatingly
from V and{u*| k € Z,k # 0}. Writingu = (u,,) with ununitary for all n, some u, for n
big enough will do the job since the elements of V are represented by constant sequences in
M®,

We briefly recall Popa’s technique of intertwining subalgebras of a II; factor using
bimodules, introduced in [226], [228] (see also Appendix C in [232]).
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Definition (6.1.18)[218]: (6.1.21). Let (M, t) be a von Neumann algebra with faithful normal

tracial statet. Suppose that A, B € M are von Neumann subalgebras. We say that A embeds

into B inside M and write A ];B, If one of the following equivalent conditions is satisfied.

(i) L? < (M, t) admits a non-zero A-B-subbimodule H satisfying dim(Hp) < o
(if) (M, eg) +n A’contains an element x with 0 < Tr(x) < oo.
(iii) There exists a projection p € B™, a normal*B-homomorphismy : A - pB™p and a
non-zero partialisometry v € M;, (C) ® M satisfyingxv = vi(x) forall x € A.
(iv) There does not exist a generalized sequence (u;);¢;0f unitaries in A satisfying
|Eg(au;b)||, —» Oforalla,b € M.
f

We write A< B B, if one of the following equivalent conditions is satisfied.
M

(vi) For every non-zero projection p € M™A',L?(pM,t) admits a non-zero Ap-B-
subbimodule H satisfying dim(Hg) < oo.
vii) For every € > 0, there exists a projection p € B™, a normal* -homomorphismy : A —
pB™p and a partial isometry v € M;, (C) @ M satisfying 7(1- vv*) <e and xv =
v (x) forall x € A.
LetA < (M,t). The set QN,, (A) of elements quasi-normalizing A was introduced, as well
as the quasi-normalizer QN,,(A)". Then, QN,,(A)"is as well the weak closure of all x € M
for which the closure of AxA in L? (M, t) has finite dimension both as a right A-module and
as a left A-module.
Let A,B c (M,t). Definep =V {py| po € (M,eg) N A" is a projection satisfying Tr(p,) <
©}.

Then, pL?(M, t) clearly is an A-B-subbimodule of L2(M, t) . In fact, it is easy to check
that it actually is a QN (A)" — QN,,(B)"-subbimodule.
Corollary (6.1.19)[260]: Suppose that e > 0 and that Q,_, < M}*S is a subfactor with the

relative property (T) whose quasi-normalizer has finite index in M}* then Q M1+6erf§.
r—2
1

Proof: Set (M,_,); = N,_, % ([,_;); . Replacing Q,_, by Q,_,1+¢, we may assume that
< .

e = 0. Suppose that Q,_, M. Nz The first statement yields i € {0,1} such that
r—2

<
QT_ZM (M,._,);.. Take a projection € N, , a unital *-homomorphism ¢ : Q,_, —
r—2
p(M,_,)?p and a non-zero partial isometry v € ((M,_;)1,(C) & M,_,)p satisfying xv =
v (x) for all x € Q,_,. By construction, the bimodule
Y(Qr—2) L ((Mr—2))®™) ,._,);-
is isomorphic with a sub-bimodule of Q,%Z_Z(M,,_Z)(MT_Z)i. Since we are supposing that
< < : :
Qr— N. We get that W(M,_,)..mn.. Denote by Q, the quasi-normalizer of Y¥(Q,_,)
M, _, pM;'p

inside pM;*_,p, The second statement of Theorem(6.1.4) implies that Q,, < p(M,-_,)}'p. But,
If Q. denotes the quasi-normalizer of Q,_, inside M,._,, it is clear that v*Q,_; < Q,.. Since
we assume that Q._; has finite index in M,._,, we arrive at a contradiction.
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Corollary (6.1.20)[260]: Let I._; and T, be infinite groups, I_, = [,_; * [. their free
product and I,_, ™~ N,_, an outer action on the II, factor N,_,. Set M,_, = N,_, < [}._,
and suppose that N,_, < M,._, has the relative property (T).

Ife>O0andm: M,_, > M!S |saf|n|te index, irreducible inclusion, then

<
T[(N)M_}"'EN 1+e and N1 2M1+67T(Nr 2)

Proof: By Corollary (6.1.5) , we get that ”(Nr—z)MHzeNr—z :
ol

Realize M!*$ = pM™ ,p . Since n(M,_,) c M!S has finite index, we can take a
projection p, € m(M,_,)™, a finite index inclusion y : M!*$ > p,m(M,_,)™p, and a non-
zero partial is ometry v € p((My—2)nm (€©) ® M,_,)p; satisfying xv = wvp(x) for all
x € MI*S. Write (M, _,)%:= p;m(M,_,)™p,. Cutting down if necessary, we may assume
that E(m,_,)s(v™v) has support p; .

Then, Y(N1*$) < m(M,_,)" has the relative property (T). The quasi-normalizer of y(N1*$

inside m(M,_,)* contalns Y(Nand hence, is of finite index. By Corollary (6.1.5), we get

that Y (N5 n(M 2)sn(Nr_Z) . so, we find a projection p, € m(N,_,)*, a unital*-
.

homomorphism 8 : Y(N1*$) - p,m(N,_,)*p, and a non-zero partial is ometry w €
P1((My_2) ;i (C) @ m(M,_;))p, satisfying xw = wo(x) forall x € P(NF5).
Since Eum,_,)s(v*v) has support p;and since w has coefficients in w(M,_,), it follows that

<
vw # 0.Moreover N*$vw < vwm(N,_,)*. We have shown that N7Z7 pprvemt(Np_2).
r—2

Corollary (6.1.21)[260]: Let (M, t) be a von Neumann algebra with faithful normal tracial
state. Let N € M be a von Neumann subalgebra. Suppose that N is a factor of type II; and
that N is quasi-regular in M. If w" is a bounded sequence in N that converges weakly to 0,
then
|En'am(awy (@ + €))l; = 0

forall a, (a + €) € M.
Proof: Step 1. Leta € M with |la || £ 1. The sequence ||Ey’qp (awy,)]|, converges to O,
whenever w” is a bounded sequence in N that converges weakly to zero. Indeed,
WHtingE vy = EnramOE yy(n'any, We may assume thata € N v (N'n M). So, we may
assume that a = x(x+¢€) withx € N'n M and (x +€) € N. Because N is a factor,
Eyiay(x+2€) = t(x+2€) for all (x+2¢) € N . Hence, Eyoyu((x+e)w))x =
t((x + e)w;])x and this last sequence converges to 0 in ||-|[.
Step 2. Let & € L*(M). The sequence ||Ey,ny (W), converges to 0, whenever w} is a
bounded sequence in N that converges weakly to zero. This follows immediately from Step 1.
Step 3, proof of the lemma. Define K as the closure of N(a + €)N in L?(M).Since N ¢ M
is quasiregular, we may assume that dim(Ky) < oo. We then find§ € M, , (C) ® K, and a,
possibly non-until, *-homomorphismy : N - M, (C)®N. Such that x¢ = &p(x) for all
x € N and such that K equals the closure of ¢ (M,,; (C) @ N). So, we may assume that a +

= &d forsomed € M, ;(C) ® N.Butthen, awy(a + €) = a&p(wy;;)d.
Smce Y(wy)is a bounded sequence in (M, 1 (C) & N) that converges weakly to zero, the
lemma follows from Step 2.
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Section (6.2): Independence Properties in Subalgebras
We continue the investigation of independence properties in subalgebras of
ultraproduct 11, factors, from [229], [256]. The main result we show along these lines is the
following:
Theorem (6.2.1)[233]: Let M, be a sequence of finite factors with dimM, — o and denote by
M the ultraproduct 11, factor 1 M , over a free ultrafilter » onN. Let Q<=M be a von
Neumann subalgebra satisfying one of the following:
(@ Q =1,Q, , for some von Neumann subalgebras Q, =M, satisfying the condition Q,, <
M,Q', N M, ,Vvn (in [226]);
(b) Q =B’ NM, for some separable amenable von Neumann subalgebraB < M .
Then given any separable subspace X =M@ (Q'NM), there exists adiffuse abelian von
Neumann subalgebra AcQ such that A is free independent to X , relative to
Q' NM,ie Egyy (%] ax) =0, foralln>1x exU{l},x e X,a e AGCl<i<n.
Note that the particular case when Q, = M, are Il, factors with atomic relative commutant, for
which one clearly has Q, # M, QN M, , recovers (2.1 in [230]).
The conclusion in Theorem (6.2.1) above can alternatively be interpreted as follows:

given any separable von Neumann subalgebra P of M that makes a commuting square with
Q'NM (in the sense of 1.2 in [110]) and we letB, =P N(Q'NM), there exists a separable von
Neumann subalgebra B, Q’, such that Pv B, =P, (Blc?)BO) (amalgamated free product of
finite von Neumann algebras over a common subalgebra, see [257], [251]). Since in the case
(b) of Theorem (6.2.1) we have Q'N'M =B (see Theorem (6.2.8)) and all embeddings into an
ultraproduct 11, factor M of an amenable separable von Neumann algebra B are conjugate by
unitaries in M, Theorem (6.2.1) shows in particular that if two separable finite von Neumann
algebras N,,N, containing copies of B are embeddable into M, thenN, , N, is embeddable
into M as well. Note that the case B atomic of this result already appears in [230], while the
case B arbitrary but with M =R“was shown in [237]. Theorem (6.2.1) implies the following
strengthening of these results:

Corollary (6.2.2) [233]:Let M =11_M_ be an ultraproduct 1i,factor as in Theorem (6.2.1).
Let N,cM be separable finite Q'NM von Neumann subalgebras with amenable von
Neumann subalgebras B, < N;,i=12 ,such that (Bl,r\Bl):(Bz,r\Bz)Then there exists a unitary

element ueM so that uBu”=B,and so that, after identifying B=B,=B,this way, we have
uNu* v N, =N, N, .

To show Theorem (6.2.1), we first construct unitaries u e Q that are approximately n-
independent with respect to given finite sets X L Q'NM . Taking larger and largern, larger and
larger finite sets X and better and better approximations, and combining with a
diagonalization procedure, one can then get unitaries that are free independent to a given
countable set, due to the ultraproduct framework.

The approximately independent unitary u is constructed by patching together
incremental pieces of it, while controlling the trace of alternating words involving u and a
given set X . This technique was initiated in [250], being then fully developed in [230], where
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it has been used to show a particular case of Theorem (6.2.1) (a). More recently, it has been
used in [256] to establish existence of free independence in ultraproducts of maximal abelian
x-subalgebras (abbreviated hereafter MASA) A — M, that are singular in the sense of [97]
(i.e., any unitary element in M that normalizes A, must lie in A,), thus settling the Kadison-
Singer problem for the corresponding ultrapower inclusionii A, c 1l _M, .

If in turn the normalizers of the MASAs A — M, are large, then one can still detect
certain independence properties inside A, by using the same type of techniques. Thus, it was
shown in [256] that 3-independence always occurs in A, and we show here that given any
countable group of unitaries T in M, that normalizes A and acts freely on it, there exists a
diffuse subalgebra B, in A such that any word I1 =, ubu’ withb eB,¢ C and distinct u, T,

has trace 0. This actually amounts to B, being the base of a Bernoulli -action, more
precisely:

Theorem (6.2.3) [233]: LetA, =M, be MASAs in finite factors, as before, and denote A =
A=TI_A cTI_M, =M. Assume I'c M is a countable group of unitaries nor- malizing A and
acting freely on it, and let H — T be an amenable subgroup. Given any separable abelian von
Neumann subalgebra B — A, there exists a T -invariant subalgebra A< Asuch that A,B are t -
independent and I' ~ A is isomorphic to the generalized Bernoulli action ' ~ L* ([01])"'" .

Note that if the above ultraproduct inclusion Ac M comes from a sequence of finite
dimensional diagonal inclusions D, =M, _,,(C) or is of the form D” =R”, whereD R is the
unique (up to conjugacy by an automorphism, by [109]) Cartan subalgebra of the hyperfinite
I, factor, then a countable group I" can be embedded into the normalizer N,, (A) of Ain M,
in a way that it acts freely on A , iff it is sofic (in [258], [249]). Thus, with the terminology in
[238], where an action of a sofic group I' ™~ X is called sofic if the inclusionL*(X) c L*(X)
[ admits a commuting square embedding into Ac M , with T"embedding into N,, (A), it
follows from Theorem (6.2.3) that if ' — X is sofic then any product actionI’ ™~ X xY withT
~Y =[01] a generalized Bernoulli action corresponding to the left action of I'on a set
| =@ .I'/H,, for some countable family of amenable subgroups H. =T , is sofic. This
generalizes a result in [238].

We recall some basic facts needed, such as the local quantization lemma from [92],
[229] and the criterion for (non-)conjugacy of subalgebras from [226]. We also show a
general fact about centralizers (or commutants) of countable sets in ultraproduct 11, factors.
We show some bicentralizer results concerning amenable algebras and groups, in ultrapower
framework, that we need in the proofs of Theorem (6.2.1) and respectively Theorem (6.2.3).
We conjecture that, in fact, the bicentralizer property characterizes amenability.

We show the main technical result needed in the proof of Theorem(6.2.1) , by using
incremental patching techniques. This result, stated as Lemma (6.2.13), actually amounts to
an “approximate version” of the free independence result in Theorem (6.2.1). We derive
Theorem (6.2.1) (in fact a stregthening of it, stated as Theorem (6.2.16), by using Lemma
(6.2.13) and an appropriate diagonalization procedure.

We show Theorem (6.2.3) (stated as Theorem (6.2.18). Also, we use the incremental
patching technique to show (see Theorem (6.2.20) that if A, =M are Cartansubalgebras in
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finite factors, with dimmM, — oo, andT,are countable subgroups of the normalizer N of
A=TI_A in M =II_M, , acting freely on A, with H, T, isomorphic amenable subgroups,
then there exists ue N such that uH,u* =H, and such that the group generated by uT,u* and
I, is the amalgamated free product T;*, T, , where H is the identification of H,,H, via
Ad(u). Taking M, finite dimensional, this recovers a result from [239], [248], on the soficity

of amalgamated free products of sofic groups over amenable subgroups and on the
uniqueness of sofic embeddings of an amenable group.

All von Neumann algebras M considered are finite (in [118]) and come equipped with
a fixed faithful normal trace state, generically denotedr. We denote by U(M) the group of
unitary elements of M and by P(M) the set of projections of M . Recall that a von Neumann

algebra is a factor if its center is reduced to the scalars. Recall that there exists a unique trace
state on a finite factor ([162]). A finite factor M is either finite dimensional (in which case
M=M,_, (C) for some n>1 with its unique trace state T given by the normalized trace

tr=Tr/n) or infinite dimensional. In this latter case, it is called a 1, factor, and is
characterized by the fact that the range of the trace on the set of projections satisfies
z(p(M))=[0].

More generally, a finite von Neumann algebra splits as a direct sumM =M, ®M, with
M, of type | (i.e. M,=® .M, (C)®A , where A are abelian von Neumann algebras,
possibly equal to 0) and M, of type Il, (which by definition means M, has no type |
summand).
We denote by |x|, = = (x'x }'*, xeM, the L* Hilbert-norm given by the trace. We denote by
L’M the completion of M in this norm. We often view M in its standard representation,

acting L’M on by left multiplication.
We will also use the L* norm || on M , defined by [x, = © (x]) = sup

{[709)||y eM,|y| <1|}. We denote by L‘M the completion of M in the norm| |. Note that by
the Cauchy-Schwartz inequality we have |x| <|x|, , while by the inequality x"'x<|x||x we
have [, </x],x]-

If McB is a von Neumann subalgebra, then E;:M — B denotes the (unique) t -
preserving conditional expectation of M onto B, which is contractible in both the operatorial
norm | | and the above L -norms, p=12 . If we viewM in its standard representation on
L’M , then the expectation E, is implemented by the orthogonal projection e, of L*M onto
L’Bc LM (viewed as the closure in the normof B M), b| |,ye;xe; =Eg(x)e;, xeM .Given
avon Neumann subalgebraB <M and aset X <M ,we say that X is perependicular to B and
write X L Bif r(x*b):O,VXe X and beB.

A finite von Neumann algebra (M,z) is separable if it is separable withrespect to the
Hilbert norm | |,. Note that this condition is equivalent to thefactthat M is countably

generated as a von Neumann algebra. More generally, X <M is asubspace, then X is
separable if it is seprable with respect to the norm|| ||, .
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The von Neumann algebra M is atomic if 1, =3, ¢, with e, e M a family of mutually
orthogonal minimal projections e, e M (or equivalently, atomic projections, i.e. with the
property that e;Me; = Ce;. M is diffuse if it has no minimal (non zero) projection. Any
abelian von Neumann algebra A which is diffuse and separable is isomorphic to L~([01]) (or
to L*(T)). Moreover, if A is endowed with a faithful normal state t , then the isomorphism
A=L"([01]) can be taken so that to carry ¢ onto the integral [. du., where 4 is the Lebesgue

measure on [0, 1].

We will often consider maximal abelian *-subalgebras (MASA) A in a finite von
Neumann algebra M,ie. M, i.e. abelian x-subalgebras Ac M withA'=M = A. In such a case,
we denote N, (A)={ueU(M)|uAu’ = A}, the normalize of A in M . Following [243], if the
normalizer generates M as a von Neumann algebra, we call Aa Cartan subalgebra in M . An
isomorphism of Cartan inclusions (A, = M,;z)=(A cM,;7) is a trace preserving isomorphism
of M, onto M, carrying A, onto A, .

If A,cM,is Cartan and A =M, is an arbitrary MASA, then a Cartanembedding (or
simply an embedding) of A, =M, into A — M is a trace preserving embedding of M, into M,
that carries A, into A such that M,NA =4, , with the commuting square condition
E.Ey, =E, satisfied (see Theorem (6.2.8)), and such that N,, (A))=N,, (A) -

For various other general facts about finite von Neumann algebras, see [162].

. Two von Neumann subalgebras B,,B, cM are in commuting square position if the
expectations . ,E, commute (see Sec. 1.2 in [104]). Note that if this is the case then we in

fact have E, ,E, =E, ,E, =E, 5, - Also, for this to happen it is sufficient that E, (B,)= B NB,

A typical example when the commuting square condition is satisfied is the following:
let QcP<=M be von Neumann algebras; then P and Q'NM are in commuting square
position (see 1.2.2 in [104]).

We notice here an observation showing that in the statement of Theorem(6.2.1) , we
may equivalently take the space X to be a separable von Neumann algebra making a
commuting square wit Q"N M, a fact that we will not use in the sequel but is good to keep in
mind. See also (3.8 in [256]) for a similar statement.

Lemma (6.2.4)[233]: Let N <M be a von Neumann subalgebra in the finite von Neumann
algebra M . If X =M is a separable subspace, then there exists a separable von Neumann
subalgebra P M that contains X and makes a commuting square with N .

Proof: We let P, « M be the (separable) von Neumann algebra generated by X and then
construct recursively a increasing sequence of inclusions of separable von Neumann algebra
B, < p,,n>1, by letting B, be the von Neumann algebra generated by E, (P,,) and p, be the

von Neumann algebra generated by B, and P, ,.

If we now define B =u,B,” and P = U, B, “ , then both algebras are separable and
B<PNN , by construction. Moreover, we have E,(P,)cB,, <P , implying that
E.(P)cBcPNN ,i.e.N,P make a commuting square with B=NNP.
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An important example of a (separable) 11, factor is the hyperfinite 11, factor R of Murray and
von Neumann ([118]), defined as the infinite tensor product(R,z) = (R,z)=&(M,,,(C),tr),. By
[118], R is the unique approximately finite dimensional ( AFD ) separable II, factor (a
separable finite von Neumann algebra algebra (M,z) is AFD if there exists an increasing
sequence of finite dimensional von Neumann subalgebras M, « M such that U M, is dense
in M in the norm | |,).

By Connes’ results in [96], R is in fact the unique amenable separable 11, factor. Recall
in this respect that a finite von Neumann algebra (M,z) is called amenable if there exists a
state o on B(L’M)that has M (when viewed in its standard representation on L2M )in
itscentralizer, o(xT)=¢(Tx),¥xeM,vT e B(L>M ), and such that ¢\M = 1. Note that the latter
condition is redundant in case M is a factor, because ¢\ M is a trace and because of the
unigueness of the trace on factors. Connes Fundamental Theorem in [96] actually shows that
amenability is equivalent to the AFD property, for any finite von Neumann algebra.

From all this, it follows that R can be represented in many different ways, for instance
as the group measure space Il, factor L*(X)> T, associated with a free ergodic measure
preserving action of a countable amenable group I ona probability space ( X,u) ([118]).
When viewed this way, R has D =L"(X)as a natural Cartan subalgebra. By [109], [246] the
Cartan subalgebra of R is in fact unique, up to conjugacy by an automorphism of rR. We may
thus represent DR as the infinite tensor product ®«(D,), = &M, , (C));,where D, is the
diagonalsubalgebra in M,_, (C).

More generally, by [97], if A, =R, is a Cartan subalgebra in an amenable separable
finite von Neumann algebra R, , then there exists an increasing sequence of finite

dimensional Cartan inclusions (A, cR,,) < (A =R, (with Cartan embeddings, as defined

before) such that U, A,,” = A, c R, =U,R;, "

We recall here a result from [92], [229], showing that if Q<=M are II, von Neumann
algebras, then one can “simulate” the expectation onto the commutantQ'(\M by “squeezing”
with appropriate projections in Q, a phenomenon called “local quantization” in [229]:
Theorem (6.2.5)[233]: (i) Let M be a finite von Neumann algebra andQ < M a von Neumann
subalgebra. Given any finite set FcM Qv (Q'NM) and any¢ >0, there exists a projection
geQ such that |jgxq|, <&7(q),vX eF.

(i) Let Q=M beQ'NM an inclusion of 11, von Neumann algebras. Given any finite
set XcM and any &>0 , there exists a projection gqeQ such that
Jaxa- EQ,ﬂM(x)qHl <e7(q),Vxe X . Moreover, g can be taken so that to have scalar central trace
in Q.

Proof: Part (i) is already showd in [92] (see also Theorem 3.6 in [256]), while part (ii) is

(Theorem A.1.4 in [229]).
Let Q.PcM be von Neumann subalgebras of the finite von Neumann algebra M.

Following [226], we say that a corner of Q can be embedded into P inside M and write
Q=< P if the following condition holds true: there exist non-zero projections pe P,qe Q, a
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unitalisomorphism y :qQq— pPp (not necessarily onto) and a partial isometrve M such that

W' € (qQq)' N gMa,v’v e w(gQq),NpMp, xv =V (x), ¥x € Qg, and x € qQq, xvv' = Oimpliesx =0.

We will actually consider cases when the above condition is not satisfied. We recall from (2.1
Iin [229]) a useful necessary and sufficient criterion for this to happen:

Theorem (6.2.6): LetMm be a finite von Neumann algebra and P,Q<=M von Neumann

subalgebras. For each qeP(Q), fixu, —u(qQq) a subgroup generating qQgas a von Neumann

algebra. Then Q «,, P if and only if the following condition holds true:
Given any ge p(Q) and any separable subspace X =M there exists a sequence of unitary

elementsu, € U such that lim |E,(xu,y)|, =0,vx,ye X .

We fix once for all an (arbitrary) free ultrafilter o onN. IfM_, n>1, is a sequence of
finite von Neumann algebras then, we denote by 11_Mn theire -ultraproduct, i.e., the finite
von Neumann algebra obtained as the quotient of ®, M, by its ideal T, = {(x,) | lim, t (x,"x,)
= 0}, endowed with the trace t (y) =lim,t (y,), where(y,) e® M, is in the class y €
ye® M, /1, ([259]).

Recall that if M, are factors and dim M ,— oo, then T1_ M is a IlI, factor ([259])and it is

non-separable ([259]).
If Q, =M, are von Neumann subalgebras, n>1, then the ultraproduct 11 Q, identifies

naturally to a von Neumann subalgebra in T1_,Mn and its centralizer (or commutant) in 1M
Is given by the formula (H(L,Qn)' NI M, =11,(Q.NM,) (see e.g. [92]).

If M is a finite von Neumann algebra, then M denotes its o -ultrapower, i.e. the
ultraproduct of infinitely many copies of M . Note thatM naturally embeds into M, as the
von Neumann subalgebra of constant sequences, and that if M is a Il factor thenM“ is a
(non-separable by [242]) 11, factor.

Let S={p,} be a countable subset in the ultrapower R“of the hyperfinite 11, factor R
and let b, =(bn,m)m be representations of each of its elements with

b, € R=®(M,,(C)), =U, M,”, where M, is the tensor product of the first n copies of
M,,(C). Thus, we may assume that for for each m, {bn,m }ng(m) cM,_, for a large enough k,, .
Then we have b, eIT,M, <R”, Vn, viewed as a subalgebra of R“.But then the ultra product
subalgebran(M e ﬂR)Z R“ commutes with the set{b,} . This shows that the centralizer of
any separable von Neumann subalgebra of R” is a type Il, von Neumann algebra without
separable direct summands.

However, for general ultra products 11,M, and ultra powers M“, we may have

countable (or even finite) subsets S that have trivial centralizer: For instance, if M is a non-
Gamma I, factor ([118]), such as the group II, factor M = L(I') assoiated with an infinit

conjugacy(ICC) countable group I' with the property(T) of Kazhdan (for example,
I'=PSL(n,Z),n>3). Then M is finitely generated and M’ n M® = C.Similarly, by results in

[234], it follows that if for some fixedn>3 we take (r,,H,,) to be any sequence of finite
dimensional irreducible representations of I'= PSL(n,Z) so that K, =dimH, — o« then the von
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Neumann subalgebra M generated by {(z.(g)) |geTl} in the ultraproduct II, factor
I1,M, ., (C) isomorphie to the group factor L(I') and has trivial relative commutant.

The following result shows that in fact the centralizer of a any separable von
Neumann subalgebra P of an arbitrary ultraproduct II, factor M =11,M,, coming from a
sequence of finite factors M, with dim M, — o, splits as the direct sum of an atomic von

Neumann algebra and a diffuse von Neumann algebra with only non-separable direct
summands.

Theorem (6.2.7)[233]: If P is a separable von Neumann subalgebra of M then
g NM =B,®B, , with B,atomic and B, diffuse and having no separable direct summand (even

more: any MASA of B, has only non-separable direct summands).
Proof: DenoteQ=P'NM and let z<Z(Q) be the maximal central projection with the property
that Q, is diffuse. We have to show that Q,’ is non-separable for any central projection
7’€Z(Q), . By replacing P M byP, — zMz, we may clearly assumez=1.

Assuming by contradiction that Q has separable direct summands, we may further
reduce with the maximal central projection z,in Q with the property that Q, is separable to
actually assume, by contradiction, that P M is separable with Q=P'(\M diffuse and

separable.
Let{b,}, = P be a countable subset of the unit ball of P, dense in the Hilbert norm| |,

Letb, =(b,,) be representations of b, with b, €M, [b,.|<[bo,[vn,m . Let also ueQ be a
Haar unitary generating a maximal abelian *-subalgebra A, of Q , and let u = (u,)_ be a
representation of u withu, eU(M_,),vm .

The fact that u belongs toQ = {b, },n MM translates into the condition

lim| [0, ,,.u, ]|, =0, vk =1, (6)
While the fact that u is a Haar unitary amounts to the condition
limz(u))=0,vj=0,. (7)

Let V. denote the set of all me N with the property that
| Ibe ot ], <27 |cl)| <2 i<k <n1<|j|<2n. (8)
If we identify ¢*Nwith the algebra C(Q)of continuous functions on its spectruma (via
the GNS representation), and we view » as a point in Q, then by (6) and (7)it follows that Vv,
correspond to an open-closed neighborhoods of we® . Let now W, ,n>0, be defined
recursively as follows: w, = Nand W, =W, NV,.,N{ne N |n>minW,}. Note that, with the
same identification as before, w, correspond to a strictly decreasing sequence of

neighborhoods of o .
Noticing that the sets v, \w,_ .} . form a partition of N, we define v=(v,), by letting

v, =u? for mew_,\W, . Sincev, eU(M,), it follows that v is a unitary element inM . By the
first relation in (15), if mew, \W, , then
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for all 1<k <n , while by the second relation in (8) we have
‘T(Vmur{])‘ 2" (10)
foralli<|j<n .

But then (9) impliesve{b,}¥ nNM =P'NM =Q, while by (10) we haver(vu')=0, for all
j=0, i.e. veQ is perpendicular to the maximal abelian *-subalgebra A, ={u}" of Q generated
by ueQ . Since by construction we have uv =vu, this shows that at the same time we have
ve{U}NQ=A, and v L A;,a contradiction. This also shows the stronger form of the statement.
Theorem (6.2.8) [233]:(i) Let M, be a sequence of finite factors with dimM_ — « and denote
M =11,M, . If B M is aseparable amenable von Neumann subalgebra, then(B'NM)'NM =B.
Moreover, B'NM is of type 11, and has only non-separable direct summands.

(i) If R denotes the hyper finite 11, factor then(R'NR“)'NR” =R.

Proof: Part (ii) is just a particular case of part (i), so we only need to show (i). By Cannes’
Theorem ([96]), since B is amenable and separable, it is approximately finite dimensional, so

B=U,B, ", for some increasing sequence of finite dimensional von Neumann subalgebras
B, = B. Note thatB'NM =N ,(B.NM)and that for each n we have (B.NM)'NM =B,(in fact, it

is trivial to see that given any inclusion of von Neumann algebras N « M with dimN <« and
M a factor, we have (N'NM)'NM =N). We first need to show the following:

Fact. Let P < M be an inclusion of finite von Neumann algebras. Let xe M g (P'NM)
and e >0. There exists a unitary element u e P such that s z(x"uxu) < || .

To show this, let K, denote the weak closure of the convex set co{uxu’|ue<U(P)}and
note right away that |y|<|x|and |y|, <|ix|,.vyeK,. Thus, K, is a weakly closed bounded
subspace in both M and L*M . In particular, there exists a unique element y, e K, of minimal
Hilbert-norm: |y,|, min{ly|, |y <k, . Since K, is Ad (U(P))-invariant (because it is the weak
closure of the Ad U(P))- invariant set co{uxu"|ueU(P)} and since Huyou*H2=||y0||2 , by the

uniqueness of yO0 it follows that uy,u* =y,,vueU(P). Thus, uy, =y.u,vue(p). By taking linear
combinations of u, this implies y,e P"NM . But by its construction, the entire K, lies in
M&(P'NM) . Thus, vy, is bothin P'YM and perpendicular to it, implying that y,=0,ie0eK,.

Assuming now that we have S}%r(x*uxu*)zg”x”z, for all ueU(P) , by taking convex
combinations over ueU(P) and then weak closure, it follows that®z(x'y)> x|, , for all
yeP. In particular, 0=%z(xy, ) > £|x|; , forcing x=0. This ends the proof of the above Fact.

Denote for simplicity Q=B'NM and note that BcQ'NM . Assume there exists
xeQ'NM with xL1LB. In particular x LB, =(B.NM)NM . By applying the Fact to the
inclusion B;NM cM and the element x, it follows that there exists a unitary element
u,€B,M such that ®z(x'u xu’)<2™",vn .

Let {e} = B, denote the (finite) pseudo group of all partial is ometries inB, that can be
obtained as a sum of elements from a given matrix unit of B,, and which we take so that {¢"}

is a subset of {e]"},,vn Let e =(e,),, With e eM_  chosen so that < and

n
ek,m

e
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{e'.}, ={ej,}; for all nm. Let alsou =(u, ), , With u,_ eU(M,). Then the above properties
translate into
) Ju, €0 ], =0, lim Rz, o ) <277, (11)

m-n,m” m*~n,m
m—-o m—-w

Foral K and alln, where x=(x,),Withx,, M, . Let Vv, denote the set of all me N with the
property that

H [un,m’el?,m]uz < 2*”,9%r(x;un'mxmu:,m)< ||x||§ 12,vKk. (12)

By (11), it follows that v, corresponds to an open-closed neighborhood of » in the

spectrum Q of /* N, under the identification?“N = C(Q). Let now W,,n>0, be defined

recursively as follows: W, = Nand W,,,; = W,,, N {n € N|n > minW, }. Note that, with
the same identification as before, W, correspond to a strictly decreasing sequence of

neighborhoods of » . Define v=(v,), by lettingv, =u, , for mew,_,\W, . Sincev,, eU(M,,),
it follows that v is a unitary element in M, while by the first relation in (12) and the fact that
{e'.}; ={ej}; it follows thatven B, NM =B'NM =Q. By the second relation in (12), we also
have %r(x*vxv*)é”x”; \2. ButxeQ'(MM by our assumption, thusvxv' = x, giving z(x'vxv’) =||x||§
a contradiction.

If Q=Q, +Q (1-z)with za non-zero central projection of Q and Q, separable, then by
the bi-commutant property we have zeBand by Proposition (6.1.17) Q, is atomic. Thus,
B, =(Q,)'NzMz would follow non-separable, a contradiction.

Assume now thatQ=Q, +Q(1-z)with z e p(Z(Q)) such that Q, is type I. By the b, -
commutation relation, it follows again that zeB and that B, =(Q,)'NzMz is non-separable
(because the commutant of any abelian von Neumann subalgebra of M is non-separable, by
4.31in [92], or 2.3 in [256]).

Theorem (6.2.9) [233]: Let A, =M, be a sequence of MASAs in finite factors and denote
A=TI_A cII_M_=M,N=N,, (A).

(i) If H <N is a countable amenable subgroup, then(H'NAM =AvH.

(if) Assume the MASAs A, c M, are Cartan. LetR, =M be a separable amenable von
Neumann subalgebra such that D, =R,NA is a Cartan subalgebra in R, with Vg (Dy) C
N(i.e. (D,cR,) € (AcM)is a cartan embeddeding, in the sense of 1.3) .Then
(NRO (Do)’ﬂ N),ﬂ N = NRO (Do)-

Moreover, if D,cR, is another Cartan inclusion witch is cartan embedded in into
Ac M, then given any isomorphism p: (D, c R,;7) — (D, — R;;7), there exists ueN such
that Ad(u)=ponR, .

Proof: (i) Let first {¢'}, be an increasing sequence of finite partitions in p(A) such that

lim, > jejue} ~E,(u)] =0,vueH (e.g., by [98], or 3.3 in [297]). If we denote by A, the von
2

Neumann subalgebra of A generated by U__ .{e]\j.,nju= andR, = A;v H, then H normalizes
A, A, is a Cartan subalgebra of R, and AvH =AvR, . In particular, H'NA=R,NA .
Moreover, since H is amenable, R, follows amenable so by ([109], [246]) there exists an
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increasing sequence of finite pseudo groups of partial isometries G, ={e}},, normalizing A,
(and Aas well), with source and targets either equal or mutually orthogonal, for each n > 1,
and such tha{ef \ j,n} generate R, .

It is then trivial to see that H'NA=N,(G,NA) and(G, NA)'NA=G,vAA,. Then the

rest of the proof proceeds with a “diagonalization” argument, exactly as at the end of the
proof of Theorem (6.2.8).
(if) The proof of this part is similar to the one of Theorem (6.2.8)(i) and of Theorem (6.2.9)(i).
(i) It is well known (and trivial to show) that if M, is a sequence of finite factors with dim
M, —wand(B,7)is a finite separable AFD von Neumann algebra, then there exists a trace
preserving embedding 6,: B @ M := [, M,and that given any other such trace preserving
embeddingd,: B < M, there exists a unitary elementu e M such that é,(b)=ug,(b)u’,vbeB. In
particular, any two copies of (B,7) in M are unitary conjugate. By Connes’ theorem [96],
this means that the same holds true for any finite, separable, amenable B.

Moreover, by a result of K. Jung in [244], the converse is also true: if a finite separable
von Neumann algebra(B,7) has a unique (up to unitary conjugacy) embedding into either an
ultraproduct 11,™M__, (C)or inR_, then Bis amenable (see [230]). In fact, by a result of N.
Brown in [236], if B <R is non-amenable, then there exist uncountably many non conjugate
copies of BinR, .

Since given any ultraproduct 11, factorsm =11_M_ , all embeddings B & M of a given
separable amenable finite von Neumann algebra are unitary conjugate in M , it seems

interesting to investigate the converse in this general setting: is it true that ifB<M is a
separable non-amenable von Neumann algebra of an arbitrary utraproduct II, factor, then
there exist “many” non-conjugate copies of B in M ? (see [241].)

On the other hand, related to Theorem (6.2.8) above, we propose the following new
characterization of amenability for separable finite von Neumann algebras:
Conjecture (6.2.10)[233]: Let P be a separable finite von Neumann subalgebra of an
ultraproduct II, factor M (notably, of M =R, or of M =11, M, (C). If the bicentralizer
condition(P’"NM)' NM =P is satisfied, then P is amenable. In particular, if M is a separable
I, factor such that(M'NM“)NM“ =M thenM =R.

Note that for a separable von Neumann subalgebra of an ultraproduct 11,
factor,conjecture is equivalent to the following statement:
Conjecture (6.2.11)[233]: Let P be a separable von Neumann subalgebra of an ultraproduct
II, factor M . If P is the centralizer of a von Neumann subalgebra Qc M, i.e,, P=Q'NM ,
then P is necessarily amenable.

Indeed, one clearly has that Conjecture (6.2.11) implies Conjecture (6.2.10). Assume in
turn that Conjecture (6.2.10) holds true. LetQ cM be so that P=Q'(1M is separable and
denote Q=P'NM. Then we still have QM =P, so P satisfies the bicentralizer condition

and it is separable, thus P is amenable.
Note also that the bicentraliser condition(M'NM“YNM“ =M for a separable I, factor

M, implies that M must be McDuff ([101]), i.e., it splits off the hyperfinite 11, factor (or else
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M’'NMis abelian, implying that the bicentralizer is non-separable), but that it cannot be of
the form N®R, with N non-Gamma ([118]). In fact, if M has a Il, von Neumann subalgebra
NcM satisfying the spectral gap condition N'NM“=(N'NM)“ ([255]), then M cannot
satisfy the bicentralizer condition (M'NM“)YNM“=M . Indeed, this is because taking
bicentralizer is an operation preserving inclusions of algebras, and thus the bicentralizer of
M in M“ contains the bicentralizer of Nin M, which is equal to (N'NM)°)NM“=N“. But
the latter is non-separable, so it cannot be contained in M, which is separable.

(i) Since by ([109]), any Cartan inclusion A, « M, with M, separable amenable finite von
Neumann algebra is a limit of an increasing sequence of finite dimensional Cartan inclusions,
it follows that any isomorphism between two embeddings of A, = M, into an ultraproduct

inclusion AcM is implemented by a unitary element in N, (A). Indeed, this is clear for
finite dimensional A, M,, and the general case follows by a diagonalisation procedure.

If in turn A,cM, is a Cartan subalgebra with M, non-amenable, and A, =M, is
embeddable into an ultraproduct Ac M which is either of the form 11, D, c11_M . (C), or of
the form D” < R” , then any two copies of A/ cM, into AcM that are conjugate by a
unitary inN,, (A), will have the corresponding copies of M, unitary conjugate in M . The
procedure of constructing “many” non-conjugate embeddings of a non-amenable M, =M in
the proof of (8.1 of [236]), is easily seen to actually give embeddings of A, c M, into AcM .

Thus, (8.1 in [266]) also implies that there exist uncountably many non-conjugate
embeddings of A, = M, into Ac M . Altogether, this gives an analogue for Cartan inclusions

(equivalently, for countable equivalence relations [243]), of K. Jung’s characterization of
amenability in [244], by a “unique embedding” - type property.

Part (ii) of Theorem(6.2.9) above suggests that, for a separable Cartan inclusion
A, = M,embedded into an ultraproduct of Cartan inclusions A<= M, the bicentralizer property

of the inclusion of full groups N,, (A)) = N,,(A) characterizes the amenability of A, = M,.

(iii) G. Elek and G. Szabo showd in [239] the following “unique embedding” type
characterization of the amenability property for a countable group H , analogue to the one for
finite separable von Neumann algebras in [244]: ifH is amenable then any two embeddings
of H into the normalizer N of A=11,D,cTI_ M, (C) = M, acting freely on A, are conjugate

by a unitary in N (this easily implies the same thing for A=D”<cR”=M ; note that by
Corollary (6.2.19) below, the same “unique embedding” result actually holds true for ANY
ultraproduct inclusion AcM );and that if H is sofic and non-amenable, then there exist at
least two embeddings of H into N acting freely on A, non-conjugate by unitaries in N. In
fact, as we mentioned, by (8.1 in [236]) there even exist uncountably many non-conjugate
such embeddings.

Part (i) of Theorem (6.2.9) suggests the following alternative ‘bicentralizer”
characterization of amenability for countable groups:
Conjecture (6.2.12): Let H be a countable group embeddable into the normalize of an
ultraproduct MASA AcM (notably D” =R“or I1,D, <IT_M,_, (C)), such that H acts freely

on A and such that it satisfies the bicentralizer condition (H'NAYNM =AvH . Then H is

amenable.
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Lemma (6.2.13)[233]: Let Q=M be an inclusion of II, von Neumann algebras and
assumQ <« Q'N M. Let f eQbe a non-zero projection. For any n>1 and any >0 , there
exists a partial isometry v.in fQfsuth that v v* = v*v,t(v v*) > T(f)/and”EanM(x)||1 <
g, Vx € Up_, FX
Proof: It is clearly sufficient to show the statement in case F =F" and|x|<1,vxeF Lets>0.
Denote g, = 5,¢, =2"¢, ,,k >1.Denot
W ={ve fQf [W" =v've P(Q),[Eqgpu (x)ul <gr(v*v),v1<k <n,Vxe F}.

Endow W with the order < in which w, <w, iffw, <w,w/w, . (W ,<) is then clearly inductively
ordered. Let v be a maximal element in W. Assumez(v'v)<z(f)/4 and denoteP=f —v'v .
Note that this implies z(vv*)/z(p) <1/3.

If w is a partial isometry in pQp withg=ww"=w'w and we let u=v+w , then for

k
X=X, Hu;x; € F* we have
i=

X=X [T, =vix+ > 0> iz I W, 2, (13)
where the sum is taken over all /=12,...k and all i=(i,,..i,) , with 1<i, <..<i, <k, and
where w,;=w  (resp. w,=w ) whenever v, =v  (resp. v, =vo),

Zo = XoViXpeo Xy 4 P Zjy = PXViggee Vi g 1% 1 P s for1<j<r,and z,, = PX, VX, -

By applying E,., to the above equation, then taking | |, and applying triangle

inequality, we then get:
|Eqrm 0O, < [CoITavi)|, + 20, Do(Zoi 5wz, (14)

SinceveW, the first term on the right side in (14)is majorized by & z(w"), so we are
left with estimating the terms z =z, IT|_w,z;;in the double summation on the right hand side,
which all have ¢>1 number of appearances of powers of o

We first deal with the terms where/¢>2.

Since for y;,y,,y e M with |y,[[<1,]y,|<1 we have|Eqn, (vuyy,)], <[viyy.], <[y, it follows that
for any ¢>2 we have:

” Sy (Z)Hl = HEQ’ﬂM (ZOi\Nilzl,i\NiZZZi"'\Niézéi)Hl < H\Nilzl,ivvizul = qu“qH = qui,iqulpMpT( p), (15)
wherez,,, =z(p) '™ and | |, , denotesthe L' -normon pMp associated with this trace.

By applying Theorem (6.1.4) to the inclusion pQpc pMp (with its trace pMp) and to
the finite set X = pMp of all elements of the form Z,; —E ), (z,;) € pMp@ (Q'NM),, for
somei=(il,...,iL), £>2, we obtain that for any a > 0, there existsqe P(pQp) such that

“qzi,iq —Eonm p(zl,i)qHL oMp <ATpyp (a) . (16)
Thus, by combining (15) and (16) we get
[Eqrm @), <[z, ,,,, 7@
< B @], + @ @)e(P)

= |Enme (@) (@z(p)+az(a)

1, PMP 7 pp
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=B @), 7(P)+ar (). (17)
We now take into account that by the definition of the norm | | , we have
[Eqmme @, ,, =suple(yz, /e (P)1y e @NM).[y|<B
= SUP{I 7(Y (@~ VWV )XV + Vo 1 Xip = W)) [ 2(P) [y e QNIM, [y < T (18)
But since yeQ'NM commutes with vi1-w' eQ and r is a trace, we actually have
(YL W)X Xy (L= W) = 7(YX forn Xy ) — T(YV' X (X, V), SO the last term in (18) is further
majorized by
SUBEJT(YX, Vi 0V, 1%, |/ 7(P) [y e QNMy| <
+ sup{jr(yv*xi1vi1+1...vi27lxirlv)‘/r( plyeQNM|y|<
= (HEQ'OM (xilvi1+1...vi271xi271)H1
l/T(p). (19)
Note at this point that x v, ,,..v, ,x , lies in E=* and v'xv, ;..v, ,x v lies in g
Also, i, —i,+1<k, with the only case when i, -i, +1=k corresponding to the casei, =1i, =k,l =2,
i.e., to the (single) term z = x,w,(pxVv,%,..v,_,%_,p)w,x, Of the double summation in(14) . Thus by
combining (17) and (19) and using that r(w")/z(p)<1/3and choosing « <¢s/3 (which is less
than (¢, —&,_,)/3,vj , for this particular z we get
|Eqom @), < &2 (W) 1 2(p)7(@) + &, (7 (W) 7(p))7(a) + @7(0) < (&, / 3+ &, /3+a)7(q) < (2, /7(q) (20)
While for any z with i, —i, +1<k -1 we get
|Eqom @), < & s (@) 1 2(p)e(@) + &4 (2(W) 1 7(P))7(a) + @7(q) < (55 /3+ 5, 13+ @)7(q) < (2,44 / 7(Q)
(21)
Since 2*'¢, =&, and since there arei(k): 2 —k —1elements in the double sum in (13)
i\

VX

[P Al PR R P §

+ “ Eqnm (VX V

for which ¢>2, of which exactly one has i,—i,+1=k and the rest satisfyi,—i,+1<k -1 by
summing up (21) and (22), we get
D ZiHZo,iH?=1Wij Zjji Hl
<2~k =2)(2,4/3)7(Q) + (2, /3)7()
&7(0) - (2k +4)(e, . /3)z(q) - (22)
Finally, from the double sum on the right hand side of (14) we will now estimate the terms
with¢=1. These are terms which are obtained fromx_v,xv,x,..v x, by replacing exactly one v,
byw,, so they are of the form z=z,,wz, where
1 =12,.K, Zy; = XV Xy Vi X1 Py Z = PX V-V X andw, = whifv, =v°
Note that there are k such them.
One should notice at this point that in the above estimates we only used the fact that
ww=ww"=qe p(Q) and that it satisfies (16) for appropriate « . But we did not use so far the

actual form of w. We will make the appropriate choice for w now, by making use of the
condition Q <« Q' M . Indeed, by Theorem (6.2.1) (2.1 in [226]), this latter condition implies
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that for all >0 and all finite sets Y, =Y, <M ©Q'NM,Y, =Y, c M, there exists a unitary
element we qQq such that
|Eqom (1:0Y,)], < BlEqrm (Yo0¥)|, < BYY, €Y, ¥, €Y, - (23)
Note that sinceY,,Y, are selfadjoint sets, by taking adjoints in (23), from these estimates
we also get:
|Eqom (%207 )|, < BlEqom (0Y,)|, < BYY, €Y.y, €Y, (24)
Denote by z the set of elements of the form x,v,x..v, . x_,p,orpxv,,.v.x, , for all

i+1"

possible choices arising from elements in LHJFVK . By applying (23), (24) to

k=1

B=e.r(q)/2k,n=1andY,=ZUZ" U{Eqn (2)12€ ZUZ"}Y, ={¥, — Eqgom (Y2) | Y2 € Y,}, it follows
that there exists we U (qQqg) such that

“EQ,QM ((XoVi XV 1 Xj 1 — Eqrm (XoViXeeV 1 X3 P)IW, X,V ...V, xk)H1 <g,r(q)/ 2k, (25)

H (Egrm ((XoViXy ooV X )W, (XV i1V, X, ) — Eg (PXjV gV xk)H1 <g (@) 2k . (26)

Thus, for each element with ¢=1in the double summationy: > 11{ w;z; , in (13),

i.e., of the form xv,x..v_.x_w, x,v,.,..v,x., We have the estimate:

||EQ,mM ((xolel...vj_lxj_lexjvj+l...vkxk)||1
<2¢g,7(q)/2k + ”EQW (XoVi XV 1 X )W By (XjVj+1---Vka)Hl
<g . r(Q)/k+y (27)
where y is the minimum between
||EQ,mM ((xolel...vj_lxj_l)q”1 = z-(q)”EQ,rWI (XoV1X1---Vj_1Xj_1)||l
and
||q Eorm ((XV1--Vi xk)”1 = T(Q)”EQnM (xJ.vJ.+l...vkxk)||1
Both elements x,v,x...v, ;X _;, XV, ;- X - belong to some F'" with j<k-1, and at least
one of them with j=0 . Thus, by the properties of vew and the assumption z(w")<z(f)/4,
we have y<g . z(wW')z(q) <& ,7(q)/4.
Hence, the last term in (27)is majorized by ¢, _,7(q)/k +¢, ,7(q)/4 .Since there are k terms with
¢>1, obtained by taking j=1..,k by summing up over j in (27) and combining with (22), we
deduce from(14)the following final estimate:
HEQ’HM (X)“l =< HEQ’OM (XOH:(=1ViXi)H1 + Z;ZiHEé'ﬂM (ZO,iH?=1\Niij,i)H1
<gr(W)+ (g —(2k +4)s,_,13)z(q) + (k/4+D)s,_,7(q)
<g7(W) + g r(WwwW*) = g ((v+W)(V+W)*) (28)
Since u=v+w has also the property that uu” =uu, it follows from (28) thatuew . But
this contradicts the maximality of vew .
We conclude that z(v'v)>z(f)/4 . If we now takes<s/2" " |, theng, = 20+00+2125 < o and
the statement follows.

226



We denote by Q, the class of von Neumann subalgebras @ =m which are of the form
Q=11,Q,, for some sub algebras Q, =M, , and have the property that condition Q <«,, Q"M .
We denote by Q, the class of von Neumann subalgebras @ < m with the property that Q' "M
is separable and (@ NM yYNM =Q.

The next result provides some properties and examples of algebras in these two classes.
Proposition (6.2.14) [233]: (i) If by Qe Q,, then @ is of typell, .

(if) If Q, =M, are von Neumann subalgebras such that Q %, QNMyvn., then Q'=11,Q,

n

u"

satisfies Q,«, QMM and thusby Q< Q

(iii) Assume m, is an increasing sequence of positive integers of the formm_ =d .k, , with
d,.k,e EN. Let M, =M, (©), with p =m, , (©), Q, =M, , (C), viewed as subalgebras of
M, that commute and generate M,. ThenQ=11Q,, p=I1,Q, satisfy the following properties:
Q'NM=P,P'NM=Q; satisfies Q «, P, (andthus Qe Q,) if and only iflim,d, /k, =0.

(iv) If BcM is a separable amenable von Neumann subalgebra, then Q:=B'NM satisfies
QNM=B .ThusQe Q,.
(v) If thus Qe Q,then Qis of type II,, has no separable direct summand, and s Q <,

Q'NM (the latter being separable).

Proof. (i) If an inclusion of finite von Neumann algebras B« M is so that B is type I, then
there exists a non-zero projection ecB such that eBe is abelian, implying that
eBe c (eBe)'NeMe , thus B<, B'NM . Since in our case we have Q +,, QNM ,this shows that

Q cannot have type | summands, thus Q isll, .

Part (ii) is an immediate consequence and of the fact thatQ’'N™M =11,(Q,NM,) with
Eqm () =(Eq am. (%), » FOrx=(x,), eM =II,M, .

Part (iii) is an easy exercise while part (iv) is a direct consequence of Theorem (6.2.1).

To show part (v), note that if QeQ, then Q has no separable direct summand, by the
same observation we have used in the proof of part (i).

Note that Conjecture (6.2.10) predicts that the class Q,, only consists of centralizers of

separable amenable subalgebras of M, i.e.,of the examples Proposition (6.2.14)(iv) above.

Note that the case B atomic of Corollary (6.2.17)(ii) above has already been shown in
[230], while the case B arbitrary but M =R“was shown in [237] (see also [240]).

A particular case when the assumptions in Corollary (6.2.17)(i) are satisfied, is when
the subalgebra P M making a commuting square with Q"N M is itself separable. But there
are interesting non-separable examples as well, that may even allow obtaining free product
with amalgamation over the entireQ'NM (which is non-separable in case by Qe Q,). For
instance, if U cU(M) is a countable group of unitaries normalizing Q'NM, then the von
Neumann algebra P generated by u and Q'NM satisfies all the conditions in Corollary
(6.2.17)(i) withB,=Q'NM.
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Note in this respect that one can alternatively take in the statement of Theorem (6.2.16)
the separable space x to be of the form X =P © (PNQ'NM), for some separable von
Neumann algebra P making a commuting square withQ'N'M . Indeed, due to Lemma (6.2.8),

the two versions follow equivalent.
Lemma (6.2.15) [233]: Let Q<=M be a von Neumann subalgebra lying in either the class

Q, ortheclass Q,.Let f €Q be aprojectionand X «c M © (Q'NM)a countable set.

Then there exists a partial isometry v in fQf such that w=vv |,
(W) 2 7(f)/4and Eypy, (X) =0Vx e X{,Vk 21 .
Proof: Let X ={x}k>1 be an enumeration of X and denote x,=1. By applying Lemma
(6.2.13) to the inclusion of I, von Neumann algebras Q = M, the projection f €Q, the positive
constant ¢=2" and the finite set X, ={x \k <n}, we get a partial isometry wn in fQf with
the property that ww =ww,,z(w/w,) > z(f)/4 and

|Eqrm ()], <27, vxe kgn(xn);n : (29)

Let f=(f,), be a representation of f with f projections. Let also x =(x,), be a
representation of x,, withx, , eM_[x .| <[x].vk.m, andw, =(w, ), €Q a representation of w,
with w,, partial isometries satisfyingw, ,w; ., =w; w, ,.,< f,.

Assume first thatQ =11,Q, € Q,, @ in which case we may clearly also assume f_ < p(Q,)

andw, , € f,Q, f,vk,m. Noticing that ify=(y,)eM thenk,, (y)=(Eq . (¥,)), » it follows from
(29) that

Hm|Eq, i, (ol Wit X;i )], <27 (30)
Foralli<k <n,x,,x; € X, Uf x; € X, 7 {1}, .
Let v. be the set of allm € N with the property that
|Equnmn, (Kjo Ty )], <27, (31)
for alli<k<nl<j <n fori>10< j, <n,y e{x}. By (30) it follows that v, corresponds to an

open-closed neighborhood of » in Q, under the identification ¢#*N = C(Q). Let now
W,n>0 , be defined recursively as follows: Wy =Nand W, =W, NV, ., Nn{n €

N|n minW,} . Note that, with the same identification as before, w, is a strictly decreasing

sequence of neighborhoods of o.
Define v=(v,), by lettingv, =w, , formew, ,\w,. It is then easy to check that v is a

partial isometry in fQf satisfying all the required conditions.

Assume now thatQe@Q,,. Let {y,}, cQ'NM be a countable set dense in the unit ball of
Q'NM in the norm ||, . Note that if vy, =(y, ), then x=(x),eM satisfies xeQ iff
limfix,,y, ,Jl,=0,v¢ . Also, xLQ'NM iff limz(x,y,,)=0,v¢ . Moreover, if 5>0 , then
|Equu, 9], <5 iff lim|z(x,y, ) IS8,/ .

With this in mind, from (29) it follows that the partial isometriesw, = (w, ), €Q satisfy

Iim | 7((Xjo LW X3 ) Y i) €27, (32)

n,m”*ji,m
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for all 1<k <n,x,,x, e X, U{.x; e X, .5, e{&,vi and for all ¢>1. Also, the fact that w,

belongs to fQf is equivalent to

rlﬂlmH[an ’ y/m]H = 0' Vf, rlnlmH fm Wn,m fm - Wn,m Hl = O (33)
Let V. be the neighborhood of » consisting of all m € N with the property that
| T((on,mHik=1Wr71/,iiji,m)y(z,m) |< 27“! | (34)

0 s Yl <275 foa W B =W [, <277

For all /=12..,n as well as for all 1<k<n,x,,eX, U{x; € X,,», {1} .Let further: W, c
N,n >0 . Be defined recursively as follows: follows:Wy, = Nand W,,.; = W, NV, N
{n € NlnminW,} . It follows that w, are all neighborhoods of o , that
W, <N,V \W,,, cW,andW, , #W, .

We now define v=(v,),, by lettingv, =w, ,if mew, ,\w,. By the way w,, have been
taken, v follows a partial is ometry withvwv' =v'v, while by the second relation in (34) we have
ve fQf and by the first relation in (34) we have E,,, (x) =0vxe X;, vk >1.

Theorem (6.2.16)[233]: Assume Q< M s either in the class If by @, orQ,,. If XcM &
(Q'NM) is a separable subspace, then there exists a diffuse von Neumann subalgebra AcQ
such that A is free independent to X , relative to Q'NM , more precisely

Eqru (%118,%) =0 foralln>1and allx e X, 1<i<n-1x,x, < X Uftha cAOC, 1<i<k .
Proof :We construct recursively a sequence of partial isometriesv,,v,,..€Q such that

(1) v,viv; =v,,v,v; =viandr(v,v}) >1-1/2',vj >1.
(i) Eqnu(x)=0,vxeY, Vk=1.

Assume we have constructed v, for j=1..m . If v is a unitary element, then we let
v,=v, for all j>m . If v, is not a unitary element, then let f =1—v’v_ Q. Note that

J m

Egrm (X)=0, for all x'eX'defU, Y, X" . Thus, if we apply Lemma (6.2.15) to Qc M, the

projection f ¢Q and the countable set X ¢ M © (Q n M), then we get a partial isometry
ue fQf , withuu® =u'u satisfying z(uu")>z(f)/2 and E,., (x)=0 for all xeU,(Xx)&. But then
v, =v. +uwill satisfy both (i) and (ii) for j=m+1.

It follows now from (i) that the sequence v, converges in the norm | |,to a unitary
element veQ , which due to (ii) will satisfy the condition E,,,vxeU,X,., Now, since Q is a

n“tv "

I1; von Neuman algebra Q contains a copy of hype finite 11, factor, which in turn contains
ahaar unitary u, € R .But then unitary u=vu,v*clearly satisfies the conditions required in part
(a) of Theorem (6.2.16).
Corollary (6.2.17)[233]: With the same assumptions and notations as in Theorem (6.2.16)
above, we have:

(i) Let PcM Dbe a von Neumann subalgebra making a commuting square with Q'NM
and denote B,=PN(Q'NM). Assume that L’P is countably generated both as a left and as a
right B, Hilbert module (equivalently, there exists a separable space X <P such that X LB,
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and spX B, and spB X are both ||, -dense in P © Bl). Then there exists a diffuse von
Neumann subalgebraB, = Q such that Pv B, =P+, (B,®B,).
(if) LetN, = M be separable von Neumann algebras, with amenable subalgebras B,,i =12, such
that (B,7)=(B,,7) . Then there exists a unitary elementu e M such that uBu =B, and such that,
after identifying B=B,=B,via Ad(u), we haveN, vuN,u" =N,;N, .
Proof: (i) Let X, € P © B;be a separable subspace such that spX,B, and spBX,are | |,-dense
in P © B, . By Theorem (6.2.16), there exists a diffuse von Neumann subalgebra B, = Qsuch
that B, is free independent to X, relative to Q'NM . It is sufficient to show that
Eqnm (%IT;Yi%) =0, foranyx, € X,B, U{, x € X,B,,y, €B,© C, 1 < i < n. But any element in X,B,
can be approximated arbitrarily well by a linear combination of elements in BX,. The
“coefficient” in B, 0f each one of these elements commutes with y, -1, so we can “move it to
the left”, being “swollen” by thex e X,B,.Thus, in the end, it follows that it is sufficient to
have  Eqqy (%ol YiXy;) =0, for X, € X, U %,; € X, ¥, €B, © C; , which is indeed the case
because B, is free independent to X, relative toQ'NM .

(if) By the first part of, after possibly conjugating with a unitary u,eM , we may
assume the subalgebras BB, coincide. Denote B this common algebra and let Q=B'NM ,
which by Theorem (6.2.8) satisfies Q'"'M =B and by Proposition (6.2.14)(iv) it belongs to Q, .
Now apply Theorem (6.2.16) to Q and to the separable spaceX =N, ©B+ N, © B, to
conclude that there exists a unitary element u, e Qsuch that uN,u* and N, generate the free
amalgamated product =N_N, .

The crucial step in proving Theorem (6.2.16) is Lemma (6.2.13). The technique used in
its proof consists of building unitaries u that are approximately n-independent with respect to
certain finite sets, by “patching” together infinitesimal pieces of u. This technique was first
considered in (2.1 of [250]), to show that given any countable set X in a finite von Neumann
algebra M and any diffuse abelian von Neumann subalgebra Ac M, there exists a Haar
unitary ue A” such that any word that alternates letters from X and {u" |n>1}, has O-trace. This
result was a key tool in proving that any derivation of a 1I,factor into the ideal of compact
operators is inner, in [250].

The technique was substantially refined in [230], to show a particular case of the case
QeQ, of Theorem (6.2.16), in which that Q=11,Q,Q, is so that Q, =M, are II, sub factors

with atomic relative commutant Q. M, (which thus clearly satisfy Q <. Q,NM,). The

result in [230] had several applications over the years: Thus, it played an important role in
developing reconstruction methods in Jones theory of subfactors in ([251], [252], [254]) and
it led, in combination with ([257]), to the definition of amalgamated free product of
inclusions of finite von Neumann algebras in [251]. It was also used to show key technical
results in [223], [218] and to show that the free product of standard invariants of subfactors
defined in ([235]) can be realized in the hyper finite 11, factor R (see A.3 in [223] and [218]).
The same incremental patching method was used in [256] to show that if A =M, is a
sequence of MASAs in 1, factors, then the abelian von Neumann algebra
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A=T1,A cII,M =M contains dffuse subalgebras B, that are r -independent o any given
separable subalgebraB < A and 3-independent to any given countable set X ¢ M & A, i.e.
any alternating word with at most 3 letters from X and 3 letters from B, & C, has trace 0
(see 0.2 in [297]). Moreover, ifA are all singular (in the sense of [97], i.e. any unitary
normalizing A, is contained in A,), then B, can be chosen to be free independent to X ,
relative to A, a fact that allowed settling the Kadison-Singer problem for ultraproducts of
singular MASAs AcM (see 0.1 in [256]).

A concrete example of a diffuse subalgebraB, in an ultraproduct MASA A satisfying
the 3-independence property is the following: Let I' ~ X be an ergodic (but not necessarily
free) measure preserving action of a discrete group Let I' on a probability space(x, ) and Let
I' ~Y =[0,1]" be the Bernoulli T'-action with diffuse base. Let A=L*(X)®L*(Y) withT ~ 4
the product action. Let M=AXxT and A=A°cM”=M If we take B=L"(X) and let
B, =1® L”([0,1)) ®1< L"(Y) be the base of the Bernoulli action, viewed as a tensor component
of the infinite tensor product I'(Y) =@ er (I'*([0,1]))4,then it is easy to see that B, isz -
independent toB and 3-independent with respect to X = {u,\g € I'}.

This construction can actually be recovered “asymptotically” inside any group measure
space von Neumann algebra. Indeed, using the incremental patching technique, we will now
show that (generalized) Bernoulli I'-actions can be retrieved inside any free action of T on an
ultrapower of measure spaces. More generally we have:

Theorem (6.2.18) [233]: Let A, =M, be a sequence of MASAs in finite factors, with dim
M, >, and denote A=IT1, A cII_,M, =M . Assume I' © Vy(A) is a countable group of
unitaries acting freely on A and let H <" be an amenable subgroup. Given any separable
abelian von Neumann subalgebraB c A, there exists a separable diffuse abelian subalgebra
Ac A such that: A B are r -independent, of I normalizesA, and the action of of T"'on A is
isomorphic to the generalized Bernoulli action T ~ L ([0,1])T/H) .

Proof: Let {u,\g € I'} be the unitaries in of I'. Denote by of g, =1, 94,9, ... €T aset of
representants of I'/H. It is clearly sufficient to construct a Haar unitary w in Asuch that w
commutes with u, Vh € H, and such that B and ug;{w™\n € Z}uy, i = 0,1,2, ..., are all multi-
independent, in the sense that for any K, any non-zero integers n;, distinct non-negative
integers m;, and any beB , we have T(bI1C gUgy W™ ), ;) = 0.

Thus, we let A,be the subalgebra of all elements in A that are fixed by Hand let {b,,},,
be a llll,-dense subset of the unit ball of B. If v is a partial isometry in A,, then we denote by
F,, the set of all elements of the form bH};Oung-v"fu;mj where 1<i<n1<k<
n, m;are distinct integers beween 0 and n, and 1 < |n;| < n . We first show the following:
Fact. Given anyn > 1 and any § > 0, there exists a Haar unitary v € A,such that |t(x)| <
5,Vx € F,,.

To show this, letw :={v € 4| [t(x)| < 6t(v*'v),Vx € F,,,t(v™) = 0,Vm # 0} .
Endow w with the order < in which w; < w, Iff w; =w,wiw;. (w,<)is then clearly

inductively ordered. Let v be a maximal element in w . Assume t(v*v) < 1 and denote p =
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1—v'v. If we Aypis a partial isometry satifying t(w™) = 0,vm # 0, and we denoteu =
v + w, then we have:

k
bill;_ g Ugm;u Yyl gmj=bill; Ougm]v gm]+2b Oug Z] ug (35) where z; €

{v,w}and the sum is taken over all possible ch0|cesforz =vorz = W,With at least one
occurrence of z; = w (thus, there are 2k*1 — 1 many terms in the summation). We thus get
the estimate

K .
| ( biHjZOugmju"Ju;mjﬂ
k j k n]
<| T(b Ougm]vn *m])| +Z| T( blH] Ougm] *m])|

< ét(vv”) +Z |T(b Hk =o0UgmjZ; z” *m1)| t z | T( b; Hk =oUgm;jZ; 7" *m1)| (36)

where the summation ; ‘contains the terms with just one occurrence of z; = w and " is the
summation of the terms that have at least 2 occurrences of z; = w.

Since A is abelian, the terms ugm_z;lj ug,inaproduct can be permuted arbitrarily.
] ]

Thus, in each summand of )" we can bring two of the occurrences of w so that to be
adjacent, i.e., of the form ylugmjanugmjugmiwniugmi% Since g, # Im; for alli # j, by

applying part (i) of Theorem (1.7) to Q = A,p and the finite
SetF = {ug Uy |l +* ]} 1 AVH = AyNM it follows that for any a > 0, there exists a

non-zero q € p(AOp) such that
”qugm_ugm,q” <at(q),V0O<m;<m; <n. (37)
] l 1

Since there are 2%*1 — (k + 1) — 1 terms in the summation }.", this shows that " <
(2F+*1 — (k + 1) — 1) < 7(q), for any choice of w that has support g q satisfying condition
(37). Thus, if we choose a < 272§, then by (37) we get " < 67(q) /2.

So we are left with estimating the terms in the summation Y ', which have just one
occurrence of w/,j # 0,i.e are of the form|t(y;w/y,)| = [tW/E,(qy.y:1q))|, for some
Y1,V2 € M,1 < |j| < n. There are k + 1many such terms for each k = 1, ..., n. Let’s denote
by Y, the set of all y,, y, which appear this way, and note that this is a finite set in gMq. Thus
Y = E4(qY,. Yoq)is finite as well.

It is sufficient now to find a Haar unitary w € A,q such that|t(w’/y)| < 67(q)/2(n +
1),Vy € Y,1 < |j| < n, because thenthe sum of the k + 1terms in Y, ‘will be majorized by
6t(q)/2, altogether showing that for all x € E,,,, we have |t(x)| < §t(uu*). Since 4yq is
diffuse, it contains a separable diffuse von Neumann subalgebra A, which is isomorphic to
L™ (T) with the Lebesgue measure corresponding to T(q)_er Let then w, € Aybe a Haar
unitary generating A, . Since{w{"},, tends to 0 in the weak operator topology and Y c qis a
finite set, there exists n, > n such that [t(wi'y)| < é1(q)/2(n+ 1), , for all yeyY
and [m| = n, . But thenw = w(;‘° Is still a Haar unitary and it satisfies all the required
conditions.

This ends the proof of the Fact.

By using this Fact, it follows that for each n there exists a unitary element v, € 4,
such that
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[T <27, Vx € By . (38)
For each g €T, let u; = (ug.,)m be a representation of u, with ug ., € Ny (4,)
Letalso b; = (b; m)man vy, = (Wpm)m € Ao, With b; 1, V1 € Ay, Vm . Then (38) becomes

lim | =( Bim oty Uity )| < 277 (39)
forall1 <i,k <n,0<j, <j;..<jr <n.Also,the fact that v, lies in A, translates into
lim ||[unm Vam]||, =0, Vh €« H,n > 1 (40)
mow s T .
Let then v,, be the set of all m € N satisfying the following properties:
| TCDim gty Vnmttgy m)| < 27" (41)

[enm vnm]ll < 27"

Forall1<ik<n0<j, <jj..<Jr <nwhere{h;}; = H is an enumeration of H. Note
that by (39) and (40), V,, corresponds to an open-closed neighborhood of w in  , under the
identification £ (N) = C(Q). Define now recursively Wy =Nand W,, ; = W, nV,.1 N
{n € NJn > min W, } .Then W, is a strictly decreasing sequence of neighborhoods of w
(under the same identification as before) with W, cn;.,, V; .

We now define w = (wp,)p, by letting wy,, = vy, ., if m € W,,_1\W,,. By the way v, ,,
have been taken, w follows unitary element in A, while by the second relation in (41) we
have w € A" = A, . Also, by the first relation in (41) it follows that B and ug {w™\n €
ZYug,, i =0,1,2,.. , are all multi-independent. Thus, if we denote by A c A the von
Neumann algebra generated by u, {w™\n € Z}ug,i = 0, then A and B are 7 -independent

and I' ~ A is isomorphic to the generalized Bernoulli action I' ~ L ([0,1]"\7 , as desired.
Corollary (6.2.19)[233]: As in Theorem (6.2.18), let A,, € M, be a sequence of MASAS in
finite factors, with dimM,, - o , and denote A =11 A, c I, M,, =M. Let G ™~ X bea
measure preserving (but not necessarily free) action of a countable amenable group G on a
probability space (X,u) . Let p;: L*(X)>x G <> M be trace preserving embeddings
taking L (X) into A, with commuting squares, and G in the normalize V' of Ain M, such
that p;(G) acts freely on A,i =1,2 . Then there exists u € N such that up,(x)u* =
P, (x)Vx € L (X) x H . In particular, any two embeddings of G into N acting freely on 4 ,
are conjugate by a unitary in V" .

Proof: By Theorem (6.2.18) applied to I' = G and H = {1}, each one of the embeddings p;
can be extended to embeddings, still denoted by p;, of A = L®(X x [0,1]%) c L®(X X
[0,1]) % G = M into A c M, satisfying the same properties, whereG ~ X x [0,1]%is the
product action. This action is free, so the corresponding inclusion is Cartan, with M AFD.
Thus, by observation, the specific isomorphism p,° p7t: p; (M) = p,(M)is implemented by a
uitary in v .

Finally, let us mention that a slight adaption of the proof of Theorem (6.2.16) allows
showing that given any two countable groups I;,T, normalizing D® in R“ (where as
before D c R is the Cartan subalgebra of the hyperfinite I1; factor), there exists a unitary
elementu € N zo(D®)that conjugates I'; in free position with I',. Moreover, if Hc I} N T,
Is a common amenable group, then u can be taken so that to commute with H and so that the
group I" generated by ul;u* and T, satisfies I' =~ I, 4T, with T acting freely if I}, T, act
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freely. This recovers a result from [248], [239]. We’ll actually state and show only the case I;
act freely of such a statement, for clarity:
Theorem (6.2.20) [233]: Let 4,, € M,, be a sequence of Cartan MASAs in finite factors, with
dimM,, - o, and denote A =11, A4, c I, M, = M, as before. Assumel; c NV, (A) are
countable groups of unitaries acting freely on A , with amenable subgroups H; c I;,i = 1,2,
such that H; = H,. Then there exists a unitary element u € N, (4) such that uH,u* = H,
and such that the group generated by ul’;u* and I, is isomorphic to I}, 4 I, and acts freely on
A , where H is the identification H; =~ H, under Ad(u).
Proof: By Corollary (6.2.19) above, there exists a unitary element u, € N, (4) such that
uoH;uy = H,. We may thus assume H; = H, , a common subgroup we will denote by H.
Denote Ay = H' ' NA .Let also Ny = H' nA and note that JV, normalize s A,.since by
Theorem (6.2.9) we have Ay, N M = A4, it follows that A, is a MASA in M, = A,V IV, and
that )V, is the normalizes A, in M, .We denote by G, = {up\u Ny, p € P(4,)}the set of
partial isometries in M, normalizes A,

The proof becomes very similar to the proof of Theorem (6.2.16). We will only show
what the analogue of Lemma (6.2.13) becomes.

Thus, For each finite subset F c I'; U IL,{1},n = 1, a non-zero projection f € A, and
v € Gesatisfyingvv* = v*v < f, we denote by F,,, the set of all elements of the form x =

uolk  v¥iu; , where ug e FU{l1}, u; EF,y; =+1, 1<k <n. We need to show that
given any € > 0 € > 0, there existsu € G, such thatuu® = u*u, [|[E4(x)|[; £ eVx €F,,,
and t(uu* > 7(f)/4.

To do this, let § = 27" ~1¢ and denote &, = 8, &, = 2¥*1e,_,, k > 1. Note that ¢, <
¢ . Let W denote the set of partial isometries v € G, with vv* =v*v < f such
that [[Eg(x)|l; < gt(vv™),Vx € F, ) forall 1 < k < n, and endow W with the order given
by w; < w, ifw; = wowiw; . Noticing that W is well ordered with respect to <, we letv €
W be a maximal element. Assume that 7(vv*) < t(f)/4 and note thatp = f —vv* €
P(Ay) will then satisfy T( vv*) /t(p) < 1/3.

If w e G, satisfiesww™ = w*wG, < p, thenu = v+ w belongs to G, and satisfies
uu* = u*u . When we develop u,ITE, (v + w) Yiu; binomially, we get

|| EaCuoTliyu Yiui)”l < ||EaCuolliqu yiui)||1 +X+2
where ¥ " is the sum of the L'-norm of terms that contain at least two occurrences of wt?l,
while Y. " is the sum the L-norm of terms containing exactly one occurrence of w*t .

To estimate ). ", exactly the same is used in the estimates (2) — (10) in the proof of
Lemma (6.2.13), to get that ). " < €,7(q) — 2k + 4)(g,-1/3) 7(q) ,

Note that in order to do that, we only use the properties of the support g of w, namely
the fact that given any finite setY ¢ M © A and any a > 0, one can take q € P(4,) such
thate ||qyqll, < at(q),Vy € Y (by applying to Q = A, and using the fact that A, N M =
A).

Now, in order to estimate };’, we denote by U, the set of partial isometries in G, that
have left and right support equal to g , which we view as a subgroup of unitaries in gM,q.
Notice that U, generate gM,q and that M, <+, My N M (because this centralizer is separable
and amenable, and by applying Theorem (6.2.8) and Proposition (6.2.14). Thus, given any
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finite set Y cM and any a >0 , there exists unitary elements w € U, such
that [|[Ey(y1wy2)ll1 < at(q),Vy1,y, €Y .

Then the same estimates as the ones in (11) — (14) in the proof of Lemma (6.2.13),
show that by u = v+ w € W, contradicting the maximality of by v . Thus, we do have
indeed T(vv*) > t(f)/4 . With this technical fact in hand, the rest of the proof proceeds
exactly as the proof of Theorem (6.2.16).

Theorem (6.2.21)[260]: Assume Q < M is either in the class Q,,, or Q,. If X ¢ M S (Q' n
M) is a separable subspace, then there exists a diffuse abelian von Neumann subalgebra A c
Q such that A is free independent to X , relative to Q' N M , more precisely
Egrom (o [IeX5 aiiex1se) = 0, for all e >0 and all x;,. € X, 20, xp, %542 € X U
{1}, a;,,c EAB C,e > 0.

Proof: We construct recursively a sequence of partial isometries v, v,,.... € Q such that

() V24eViteVite = Vite r ViteVide = Vite Vite ANA T (V14eVipe) =1 — , Ve 2 0.
(i) Egram(x) = 0,Vx € X5 e 2 0.

Vite’

Assume we have constructed v, fore =0,...,m — 1. If v,,, is a unitary element, then we
let v, = vy, forall 1+ € > m. If v, is not a unitary element, thenlet f = 1 —v,,, v, €
Q. Note that Eyrny(x’) = 0, for all x' € X' ©u,, . X;*¢. Thus, if we apply Lemma
(6.2.13) to Q < M, the projection f € Q and the countable set X' ¢ M & (Q' n M), then
we get a partial isometry u € fQf, with uu* = u*u satisfying = (uu*) = 7 (f)/2 and
Egiam(x) = O0forallx € Uy, (X")ite. But then v, = v,, + u will satisfy both (i) and
(ii) for e = m.

It follows now from (i) that the sequence v, . converges in the norm || ||, to a unitary
element v € Q, which due to (ii) will satisfy the condition E /ny (x), VX € Upype X572€ .
Now, since Q is a II; von Neumann algebra, Q contains a copy of the hyperfinite II, factor,
which in turn contains a Haar unitary u, € R. But then u = vuyv* clearly satisfies the
conditions required in part (a) of Theorem (6.2.16).

2(1+¢€)
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