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1. Abstract

In this paper we considered the concept of CR-
submanifolds of Kaehlerian manifolds. We
introduced the compatibility equations of Gauss,
Codazzi and Ricci. Then we utilized the above
equations to deduce some characterization
theorems for CR-submanifolds

2. Introduction

The notion of CR-submanifolds was introduced by
A. Bejanco [4] and then several publications have
paved the way to acquire knowledge about the
characterization of CR-submanifolds embedded in
different manifolds [1, 2, 3] and [9]. In this paper
we considered CR-submanifolds of Kaehlerian
manifolds. First we treated Kaehlerian manifold
and introduced the complex structure. It is known
that a manifold need not be totally real or complex.
So the notion of CR-submanifold came into play.
We defined this notion of CR-
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submanifolds, then we treated the compatibility
equations of Gauss, Codazzi and Ricci that are
adapted to our study. At the end of the paper we
considered the characterization problem of CR-
submanifolds.

3. Kaehlerian manifolds
3.1. Basic Concepts

In this section we give the fundamental concepts
concerning the study.

Let M be a Riemann manifold and M be a
submanifold of M . The Riemannian metric g on

M induces a Riemannian metricon M . Let TM

and TM * denote tangent and normal bundles,
respectively, and V, V be the Levi-Civita
connections on M and M , respectively, then for
XY eI'(TM) we have

VY =V,Y +h(XY) (3.1)

where I'(TM ) is the module of differentiable

sections defined on the bundle TM and h is the
second fundamental form of M . The equation
above is called as the Gauss formula. V being an

element of T(TM *) the Wiengarten formula is
given by

ViV =-A, X +VyV (3.2)

where A, is the fundamental tensor of Weingarten

with respect to the normal section V , and V= is the
normal connection on M . It is well known that

g (h(X.Y )V )=g(A/X Y )(33)
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forany XY e'MM), V eI'MM ).

A g-dimensional distribution on an n-dimensional
manifold M is a mapping D defined on M which
assigns to each point x of M a g-dimensional
linear subspace D, of T, (m).

D is said to be differentiable if there exist g

differentiable vector fields on a neighborhood of x ,
for each point (y) in this neighborhood of x ,

which form a basis of D, . The set of these g
vector fields is called a local basis of D .

An almost complex structure on a differentiable
manifold M is a tensor field J of type (1.1) which
is at every point x of M , an endomorphism of

T, (m) such that J? =—1, where | denotes the
identity transformation of T, (m).

A manifold M which an almost complex structure
J is called an almost complex manifold.

The torsion of the an almost complex structure J is
a tensor field N of type (1.2) called the Nijenhuis
torsion given by :

N (XY )=([3X,JY ]-[X )Y ]-J[X ,IY ]-J[IX Y ])
(3.4)
for any vector fields X andY .

An almost complex structure J is called a
complex structure if it is torsion N vanishes
identically and M is called a complex manifold.

A Hermition metric on almost complex manifold
M is a Riemannian metric g such that
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g(IX,I¥)=g(X,Y) (3.5)

for any vector field X andY .

An almost complex manifold (resp. A complex
manifold) with Hermition metric is called an almost
Hermition manifold (resp. Hermition).

We notice that every almost complex manifold M
with a Riemannian metric g admits a Hermition

metric. Indeed, for any almost complex structure J
on M putting
h(X,Y)= g(X,Y)+ g(JX,JY) (3.6)

for any vector fields X andY we obtain a
Hermition metric h .

A Hermition manifold M is called a Kaehlerian
manifold if the almost complex structure J of N is
parallel, that is VJ =0.

4. Gauss, Ricci and Codazzi equations

Let M be a complex m-dimensional (2m-
dimensional) Kaehlerian manifold with almost
complex structure J and with Kaehlerian metric
g .Let M be areal n-dimensional Riemannian

manifold isometrically immersed in M . We denote
by the same g the Riemannian metric tensor field

induced on M from that M . The operator of
covariant differentiation in M (resp. M ) will
denote by V(resp.v).

For any vector field X tangentto M, we put
JX =PX + FX (4.1)

journal.ush.sd E-mail:journal@ush.sd Box:142-143



21

ISSN:1858-571X (12011 ) ,ilal) soel) Ciing P2y 55 Haals e

where PX is the tangent part of JX and FX isthe
normal part of JX . Then P is an endomorphism
on the tangent bundle T(M)and F is a normal

bundle I-from on the tangent bundle T(M).

For any vector fieldV normal to M we put
JV =tV + fV (4.2)

where tV is the tangential part of JV and fV the
normal part of JV . For any vector fieldY tangent
to M , we have from (4.1), g(JX,Y)=g(PX,Y),

which shows that g(PX,Y ) is a skew-symmetric.

Similarly, for any vector U normalto M , we
have, from (4.2), g(JV,U)=g( fV,U), which

shows that g( fV,U) is a skew-symmetric.
From (4.1) and (4.2) we also have
g(FX,V)+g(X,tv)=0 (4.3)
which gives the relation between F and t .

Now, applying J to (4.1) and using (4.1) and (4.2)
we find

P?=—1-tF, FP+ fF =0 (4.4)

Applying J to (4.2) and using (4.1) and (4.2) we
find

Pt+tf =0 f2=—|—Ft (4.5)

We define the covariant derivative VP of P by

(ViP)Y =V, (PY)-PV,Y
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And the covariant derivative V, F of F by

(Vi F)Y =Dy (FY)—FV,Y . Similarly, we define
the covariant derivative V4t of t and V, f of f
by (Vxt)V =V, (tV)—-tD,V and

(Vi f)V =Dy (fV)— D,V respectively. Then,

from the Gauss and Weingarten formulas we have

B(X,Y)+ fB(X,Y)=(VyP)Y ~Ay X +B(X,PY)+(V,F)Y

Comparing the tangential and normal parts of both

sides of this equation, we find

(VxP)Y =A X +1B(X.Y)  (4.6)
(VxF)Y =—B(X,PY)+ fB(X,Y),  (4.7)
Similarly, we have

—PA, —FA /X =(th) —Ay X + B(X,tV)+(VXf)V
’from which

(VytV = Ay X —PA X, (4.8)
(Vi F)V =—FA X —tB(X,tV) (4.9)

Let M be an n-dimensional submanifold of a
complex space from M ™" (c) Then the curvature

tensor R of M is given by
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R(X Y )2 :%c [9(Y .Z)X g (X ,Z)
+g (Y ,Z2)X —g(IX,Z)IY
+20 (X Y )IZ]+Ag 2 X —Agy )
+(W B)(X.Z)=(VxB)(V.Z)

For any vector field X,Y and Z tangentto M .
Comparing the tangential and normal part of the
both sides of this equation, we have, following

equations of Gauss and Codazzi respectively

R(X Y )Z :%c[g(Y Z)X —g(X,Z)Y +g(PY ,Z)PX

~g(PX,Z)PY +2g (X ,PY )PZ ]
(4.10)

+AB(Y ,z)X _AB(X ,z)Y y
(VxB)(Y . Z)-(WB)(X.Z)

:%c[g(PY ,Z)FX —g(PX,Z)FY +2g (X ,PY )FZ ]
(4.11)

Similarly, we have the equation of Ricci:
g(R" (XY UV )+ (A AL XY )-

Zc[g(FY U)g(FX V)- g(FX U)g(FY V)
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(4.12)
+ 20(X,PY )g(fu V)
5. CR-Submanifold of Kaehler manifold

Let M be a Kaehlerian manifold with almost
complex structure J , A submanifold of M is
called CR-submanifold of M if there exists a

differentiable distribution D:x —— Dy T, (M)
on M satisfying the following conditions:

I ) D ininvariant, i.e., JD, =D, for each xeM and
i) the complementary orthogonal distribution
D" :x —— Dy T, (M) is anti-invariant, i.e.,

JDy Ty (M) foreach xeM

In the sequel, we put dimM =2m, dimm =n,
dimD =h, D* =gand codim M =2m —n =P . If
g =0, then a CR-submanifold is called an invariant

submanifold of M , and if h=0, then M is called an
anti-variant submanifold of M .

If P=q, then a CR-submanifold M is called a
generic submanifold of M . If h>0 and >0 then
a CR submanifold M is said to be non-trivial
(proper).

If M is an invariant submanifold of a Kaehlerian
M , F in (4.1) vanishes identically. Moreover , we
see that t in (4.2) vanished identically. Thus we

have J X =FX and JV = fV.From (4.6)
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we see that any invariant submanifold of a
Kaehlerian manifold is also Kaehlerian manifold
with respect to induced structure. From (4.7) and
(4.8) we have

Lemma 5.1. Let M be an invariant submanifold of

Kaehlerian submanifold M _ Then

B(X,JY)=B(JX,Y)=JB(X,Y) (5.1)
JA, +A,IX =0 (5.2)
Ay, X =JA, X (5.3)

Theorem 5.1: In order for a submanifold M of a

Kaehlerian manifold M to be a CR submanifold, it

IS necessary and sufficient that FP =0.

Theorem 5.2: Let M be a CR-submanifold of a

Kaehlerian manifold M then P is an f-structure in

M and fis an f-structure the normal bundle of M .

Lemma 5.2: Let M be a CR-submanifold of a

Kaehlerian manifold M . Then we have

AexY = Agy X
Theorem 5.3. Let M be a CR submanifold of a
Kaehlerian manifold M . Then the distribution D

Is integrable if and only if the second fundamental

form satisfies

h(X,JY )=h@X Y ) for XY eI(D)
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Theorem 5.4. Let M be a CR submanifold of a

Kaehlerian manifold M . Then the distribution D is

completely integrable and its maximal integral

submanifold M *is an anti-invariant submanifold of M _

Theorem 5.5. Let M be a CR-submanifold of a

Kaehlerian manifold M . Then the f-structure P is

partially integrable if and only if

B(PX,Y)=B(X,PY) 64

Lemma5.3. Let M be a mixed foliate CR-submanifold of

Kaehlerian manifold M . Then we have

for any vector fieldV normalto M .

5.1. CR-product in Kaehler manifolds

A CR-submanifold of a Kaehler manifold M is called a
CR-product if it is locally a Riemannian product of a
holomorphic submanifold N Tanda totally real
submanifold N+ of M .

Theorem 5.1.1. [Chen, 1981].

A CR-submanifold of a Kaehler manifold is a CR-product
if and only if P is parallel.

Theorem 5.1.2. [Chen, 1981]. A CR-submanifold of a
Kaehler manifold is a CR-product if and only if
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Lemma5.1.1. Let M be a CR-product of a Kaehler
manifold M . Then for any unit vectors X € D and
Z € D* we have

Hg(X,2)=2|B(X,2)|

where H~B(X,Z)=§(Z,’I§X,JXJZ) Is the
holomorphic bisectional curvature of the plane
X>Z.

Theorem 5.1.3. (Chen, 1981). Let M be a Kaehler
manifold with negative holomorphic bisectional

curvature. Then every CR-product in M is either a
holomorphic submanifold or a totally real
submanifold. In particular, there exists no proper
CR-product in any complex hyperbolic space

M (c), (c <0).

A warped product in CR-submanifold of Kaehler
manifold defined as M = N*x; N (i.e. If

(B,gg), (F,gg) Riemannian manifolds, f >0
smooth functionon B, M =Bx;F,g=gg + f %g¢.

Theorem 5.1.4. (Chen, 2001). If M =N*x N" is

a warped product CR-submanifold of a Kaehler
manifold M such that N is a totally real
submanifold and N is a holomorphic submanifold
of M, then M is a CR-product.

Remark (Chen, 2001). There do not exist warped
product CR-submanifolds in the for N*x N'

other than CR-products.
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By contrast, there exist many warped product CR-

submanifolds NTxf N+ which are not CR-products.

Theorem 5.1.5. (Chen, 2001). A proper CR-submanifold

M of a Kaehler manifold M is locally a CR-warped
product if and only if

A,Z=((IX)u)Z, XeD, ZeD"
for some function © on M satisfying Wy = 0, for all
W e D™

Theorem 5.1.6. (Chen, 2001). Let M = NTxf N+ bea

CR-warped product in a Kaehler manifold M . Then

1. HBH2 > 20|V (log f)Hz, where V(log f) is the gradient

of log f,

2. If the equality sign holds identically, then N is a
totally geodesic and N Lisa totally umbilical submanifold
of M . Moreover, M is a minimal submanifold in M .

3. When M is generic and g > 1, the equality sign holds

if and only if N Lisa totally umbilical submanifold of

~

M.

4. When M is generic and g =1, then the equality sign

holds if and only if the characteristic vector of M isa

principal vector field with zero as its principal curvature.

(In this case M is a real hypersurface in M ).
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A Twisted product in CR-submanifold of Kaehler
manifold is defined as M = N*x NT (i.e. If

(B,gg),(F,gg) are Riemannian manifolds, f >0
smooth function on Bx f, then

M =Bx;F,g=gg+ f°gg.

Theorem 5.1.7. (Chen, 2000). If M =N*x,;N' isa

twisted product CR-submanifold of a Kaehler
manifold M such that N is a totally real
submanifold and N is a holomorphic submanifold
of M, then M is a CR-product.

Theorem 5.1.8. (Chen, 2000). Let M = N"x, N+

be a CR-warped product in a Kaehler manifold M.
Then

1. B > ZqHVT (log f)Hz, where V' (log f) is the
N T —component of the gradient of log f ,

2. If the equality sign holds identically, then N7 is
a totally geodesic and N+ is a totally umbilical
submanifold of M .

3. When M is generic and g >1, the equality sign

holds if and only if N is a totally geodesic and
N+ is a totally umbilical submanifold of M.

6. Conclusion and future outlook

Historically CR-submanifolds are related to
variations, possibly described by partial differential
equation. Thus the classifications of
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CR-submanifolds are linked to the classification of
solution of this equations. The point which is not consider
in this paper is whether some classifications of CR-
submanifolds come from variational principles. This will
be our future outlook.
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