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CR-Submanifolds of Kaehlerian Manifolds 
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 :خلص البحثستم

كوشي )في هذه الورقة درسنا كثيرات الطيات الجزئية لـ     
ستنتجنا فيها معادات ا ،(كهلر)في كثيرات طيات ( وريمان

، ثم استخدمنا مفردات هذه المعادلات (جاوس وكوداسي وريسي )
 .ت المميزة التصنيفيةفي تجميع بعض النظريا

1. Abstract 

In this paper we considered the concept of CR-

submanifolds of Kaehlerian manifolds. We 

introduced the compatibility equations of Gauss, 

Codazzi and Ricci. Then we utilized the above 

equations to deduce some characterization 

theorems for CR-submanifolds  

   2. Introduction 

The notion of CR-submanifolds was introduced by 

A. Bejanco [4] and then several publications have 

paved the way to acquire knowledge about the 

characterization of CR-submanifolds embedded in 

different manifolds [1, 2, 3] and [9]. In this paper 

we considered CR-submanifolds of Kaehlerian 

manifolds. First we treated Kaehlerian manifold 

and introduced the complex structure. It is known 

that a manifold need not be totally real or complex. 

So the notion of CR-submanifold came into play. 

We defined this notion of CR- 
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submanifolds, then we treated the compatibility 

equations of Gauss, Codazzi and Ricci that are 

adapted to our study. At the end of the paper we 

considered the characterization problem of CR-

submanifolds. 

3. Kaehlerian manifolds  

3.1. Basic Concepts 

In this section we give the fundamental concepts 

concerning the study. 

Let M  be a Riemann manifold and M be a 

submanifold of M . The Riemannian metric g  on 

M  induces a Riemannian metric on M . Let TM  

and TM   denote tangent and normal bundles, 

respectively, and  ,   be the Levi-Civita 

connections on M  and M , respectively, then for 

, ( )X Y TM  we have 

( , )X XY Y h X Y      (3.1) 

where ( )TM  is the module of differentiable 

sections defined on the bundle TM  and h  is the 

second fundamental form of M . The equation 

above is called as the Gauss formula. V being an 

element of ( )TM  the Wiengarten formula is 

given by 

X V XV A X V       (3.2) 

where VA is the fundamental tensor of Weingarten 

with respect to the normal section V , and   is the 

normal connection on M . It is well known that 

 ( , ), ( , )Vg h X Y V g A X Y  (3.3) 
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for any , ( ),   ( )X Y TM V TM   . 

A q-dimensional distribution on an n-dimensional 

manifold M  is a mapping D  defined on M  which 

assigns to each point x  of M  a q-dimensional 

linear subspace XD  of ( )XT m . 

D  is said to be differentiable if there exist q  

differentiable vector fields on a neighborhood of x , 

for each point ( )y  in this neighborhood of x , 

which form a basis of YD . The set of these q  

vector fields is called a local basis of D . 

An almost complex structure on a differentiable 

manifold M  is a tensor field J  of type (1.1) which 

is at every point x  of M , an endomorphism of  

( )XT m  such that 2 1J   , where I  denotes the 

identity transformation of ( )XT m .  

A manifold M  which an almost complex structure 

J  is called an almost complex manifold.  

The torsion of the an almost complex structure J  is 

a tensor field N  of type (1.2) called the Nijenhuis 

torsion given by : 

   

 ( , ) [ , ] [ , ] [ , ] [ , ]N X Y JX JY X Y J X JY J JX Y   

  (3.4) 

for any vector fields X  and Y . 

An almost complex structure J  is called a 

complex structure if it is torsion N  vanishes 

identically and M  is called a complex manifold.  

A Hermition metric on almost complex manifold 

M  is a Riemannian metric g  such that  
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   , ,g JX JY g X Y    (3.5) 

for any vector field X  and Y .  

An almost complex manifold (resp. A complex 

manifold) with Hermition metric is called an almost 

Hermition manifold (resp. Hermition). 

We notice that every almost complex manifold M  

with a Riemannian metric g  admits a Hermition 

metric. Indeed, for any almost complex structure J  

on M  putting  

     , , ,h X Y g X Y g JX JY    (3.6) 

for any vector fields X  and Y  we obtain a 

Hermition metric h .  

A Hermition manifold M  is called a Kaehlerian 

manifold if the almost complex structure J  of N  is 

parallel, that is 0J  . 

4. Gauss, Ricci and Codazzi equations 

Let M  be a complex m-dimensional (2m-

dimensional) Kaehlerian manifold with almost 

complex structure J  and with Kaehlerian metric 

g . Let M  be a real n-dimensional Riemannian 

manifold isometrically immersed in M . We denote 

by the same g  the Riemannian metric tensor field 

induced on M  from that M . The operator of 

covariant differentiation in M  (resp. M ) will 

denote by  .resp  . 

For any vector field X  tangent to M , we put  

JX PX FX       (4.1) 
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where PX  is the tangent part of JX  and FX  is the 

normal part of JX . Then P  is an endomorphism 

on the tangent bundle ( )T M and F  is a normal 

bundle I-from on the tangent bundle ( )T M .  

For any vector field V  normal to M  we put  

JV tV fV       (4.2) 

where tV  is the tangential part of JV  and fV  the 

normal part of JV . For any vector field Y  tangent 

to M , we have from (4.1),     , ,g JX Y g PX Y , 

which shows that  ,g PX Y  is a skew-symmetric. 

Similarly, for any vector U  normal to M , we 

have, from (4.2),    , ,g JV U g fV U , which 

shows that  ,g fV U  is a skew-symmetric.  

From (4.1) and (4.2) we also have  

   , , 0g FX V g X tV      (4.3) 

which gives the relation between F  and t .  

Now, applying J  to (4.1) and using (4.1) and (4.2) 

we find  

2 ,                     0P I tF FP fF      (4.4) 

Applying J  to (4.2) and using (4.1) and (4.2) we 

find  

0Pt tf   ,        
2f I Ft       (4.5) 

We define the covariant derivative X P  of P   by 

   X X XP Y PY P Y     
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And  the  covariant derivative X F  of F  by 

   X X XF Y D FY F Y    . Similarly, we define 

the covariant derivative X t  of t  and X f  of f  

by    X X Xt V tV tD V    and 

   X X Xf V D fV fD V    respectively. Then, 

from the Gauss and Weingarten formulas we have  

         , , ,X FX XtB X Y fB X Y P Y A X B X PY F Y      

 

Comparing the tangential and normal parts of both 

sides of this equation, we find  

   ,X FYP Y A X tB X Y   ,  (4.6) 

     , , ,X F Y B X PY fB X Y     (4.7) 

Similarly, we have  

     ,V V X fX XPA FA X t A X B X tV f V       

, from which  

   X fX Vt V A X PA X   ,    (4.8) 

     ,X Vf V FA X tB X tV     (4.9) 

Let M  be an n-dimensional submanifold of a 

complex space from  mM c . Then the curvature 

tensor R  of M  is given by  
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     

   

     

     

, ,

1
, [ , ,

4

                    , ,

                    2 , ]

                    , ,

B Y Z B X Z

Y X

R X Y Z c g Y Z X g X Z Y

g JY Z JX g JX Z JY

g X JY JZ A X A Y

B X Z B Y Z

 

 

  

   

 

For any vector field ,X Y  and Z  tangent to M . 

Comparing the tangential and normal part of the 

both sides of this equation, we have, following 

equations of Gauss and Codazzi respectively  

       
1

, , , ,
4

R X Y Z c g Y Z X g X Z Y g PY Z PX  

 

    , 2 ,g PX Z PY g X PY PZ 

  (4.10) 

   , ,
 ,

B Y Z B X Z
A X A Y    

     

      

, ,

1
, , 2 ,

4

X YB Y Z B X Z

c g PY Z FX g PX Z FY g X PY FZ

  

  

 (4.11) 

Similarly, we have the equation of Ricci:

  ( )( ) [ ]( )   , , , ,V Ug R X Y U V A A X Y^ + =  

     1
4

[ ( , ) ( , ) ( , ) ( , )c g FY U g FX V g FX U g FY V-
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(4.12) 

   

( ) ( )2 , ,g X PY g fU V+  

5. CR-Submanifold of Kaehler manifold  

Let M  be a Kaehlerian manifold with almost 

complex structure J , A submanifold of M  is 

called CR-submanifold of M  if there exists a 

differentiable distribution : ( )X XD x D T M   

on M  satisfying the following conditions: 

i ) D in invariant, i.e., X XJD D  for each x M and 

ii) the complementary orthogonal distribution  

: ( )X XD x D T M    is anti-invariant, i.e., 

 X XJ D T M
   for each x M  

In the sequel, we put dim 2 ,M m  dimm n , 

dimD h , D q  and codim 2M m n P   . If 

0q  , then a CR-submanifold is called an invariant 

submanifold of M , and if 0h  , then M is called an 

anti-variant submanifold of M . 

If P q , then a CR-submanifold M  is called a 

generic submanifold of M . If 0h  and 0q  then 

a CR submanifold M  is said to be non-trivial 

(proper).  

If M  is an invariant submanifold of a Kaehlerian 

M  , F  in (4.1) vanishes identically. Moreover , we 

see that t  in (4.2) vanished identically. Thus we 

have J X FX  and JV f V . From (4.6)  
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we see that any invariant submanifold of a 

Kaehlerian manifold is also Kaehlerian manifold 

with respect to induced structure. From (4.7) and 

(4.8) we have  

Lemma 5.1. Let M  be an invariant submanifold of 

Kaehlerian submanifold M . Then 

( , ) ( , ) ( , )B X JY B JX Y JB X Y     (5.1) 

0V VJA A JX       (5.2) 

JV VA X JA X       (5.3) 

Theorem 5.1: In order for a submanifold M  of a 

Kaehlerian manifold M  to be a CR submanifold, it 

is necessary and sufficient that 0FP  . 

Theorem 5.2: Let M  be a CR-submanifold of a 

Kaehlerian manifold M  then P  is an f-structure in 

M  and f is an f-structure the normal bundle of M .  

Lemma 5.2: Let M  be a CR-submanifold of a 

Kaehlerian manifold M . Then we have  

FX FYA Y A X  

Theorem 5.3. Let M  be a CR submanifold of a 

Kaehlerian manifold M . Then the distribution D  

is integrable if and only if the second fundamental 

form satisfies 

( , ) ( , )h X JY h JX Y     for , ( )X Y D  
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Theorem 5.4.  Let M  be a CR submanifold of a 

Kaehlerian manifold M . Then the distribution D
 is 

completely integrable and its maximal integral 

submanifold M 
is an anti-invariant submanifold of M . 

Theorem 5.5. Let M  be a CR-submanifold of a 

Kaehlerian manifold M . Then the f-structure P  is 

partially integrable if and only if  

   , ,B PX Y B X PY
   (5.4)

 

Lemma 5.3. Let M  be a mixed foliate CR-submanifold of 

Kaehlerian manifold  M . Then we have  

0V VA P PA       (5.5) 

for any vector field V  normal to M . 

5.1. CR-product in Kaehler manifolds 

A CR-submanifold of a Kaehler manifold M  is called a 

CR-product if it is locally a Riemannian product of a 

holomorphic submanifold 
TN  and a totally real 

submanifold 
N  of  M . 

Theorem 5.1.1. [Chen, 1981].  

A CR-submanifold of a Kaehler manifold is a CR-product 

if and only if P  is parallel. 

Theorem 5.1.2. [Chen, 1981]. A CR-submanifold of a 

Kaehler manifold is a CR-product if and only if 

0 DA
JD

. 
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Lemma 5.1.1. Let M  be a CR-product of a Kaehler 

manifold M
~

. Then for any unit vectors DX   and 
DZ  we have 

2
),(2),(

~
ZXBZXHB   

where )
~

,(~),(
~

, JZRZgZXH JXXB   is the 

holomorphic bisectional curvature of the plane 

ZX  . 

Theorem 5.1.3. (Chen, 1981). Let M
~

 be a Kaehler 

manifold with negative holomorphic bisectional 

curvature. Then every CR-product in M
~

 is either a 

holomorphic submanifold or a totally real 

submanifold. In particular, there exists no proper 

CR-product in any complex hyperbolic space 

)0(),(
~

ccM . 

A warped product in CR-submanifold of Kaehler 

manifold defined as T
f NNM    (i.e. If 

),(),,( FB gFgB  Riemannian manifolds, 0f  

smooth function on B , FBf gfggFBM 2,  . 

Theorem 5.1.4. (Chen, 2001). If T
f NNM    is 

a warped product CR-submanifold of a Kaehler 

manifold M
~

 such that N  is a totally real 

submanifold and TN  is a holomorphic submanifold 

of M
~

, then M  is a CR-product.  

Remark (Chen, 2001). There do not exist warped 

product CR-submanifolds in the for T
f NN   

other than CR-products. 
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By contrast, there exist many warped product CR-

submanifolds 
 NN f

T
 which are not CR-products. 

Theorem 5.1.5. (Chen, 2001). A proper CR-submanifold 

M  of a Kaehler manifold M
~

 is locally a CR-warped 

product if and only if 

   DZDXZJXZAJZ ,,)(   

for some function   on M  satisfying 0W , for all 

DW . 

Theorem 5.1.6. (Chen, 2001). Let 
 NNM f

T
 be a 

CR-warped product in a Kaehler manifold M
~

. Then 

1. 
22

)(log2 fqB  , where )(log f  is the gradient 

of log f , 

2. If the equality sign holds identically, then 
TN  is a 

totally geodesic and 
N  is a totally umbilical submanifold 

of M
~

. Moreover, M  is a minimal submanifold in M
~

. 

3. When M  is generic and 1q , the equality sign holds 

if and only if 
N  is a totally umbilical submanifold of 

M
~

. 

4. When M  is generic and 1q , then the equality sign 

holds if and only if the characteristic vector of M  is a 

principal vector field with zero as its principal curvature. 

(In this case M  is a real hypersurface in M
~

). 
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A Twisted product in CR-submanifold of Kaehler 

manifold is defined as T
f NNM    (i.e. If 

),(),,( FB gFgB  are Riemannian manifolds, 0f  

smooth function on fB , then 

FBf gfggFBM 2,  . 

Theorem 5.1.7. (Chen, 2000). If T
f NNM    is a 

twisted product CR-submanifold of a Kaehler 

manifold M
~

 such that N  is a totally real 

submanifold and TN  is a holomorphic submanifold 

of M
~

, then M  is a CR-product.  

Theorem 5.1.8. (Chen, 2000). Let  NNM f
T  

be a CR-warped product in a Kaehler manifold M
~

. 

Then 

1. 
22

)(log2 fqB T , where )(log fT  is the 

TN –component of the gradient of log f , 

2. If the equality sign holds identically, then TN  is 

a totally geodesic and N  is a totally umbilical 

submanifold of M
~

. 

3. When M  is generic and 1q , the equality sign 

holds if and only if TN  is a totally geodesic and 
N  is a totally umbilical submanifold of M

~
. 

6. Conclusion and future outlook 

Historically CR-submanifolds  are related to 

variations, possibly described by partial differential 

equation. Thus the classifications of 
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 CR-submanifolds are linked to the classification of 

solution of this equations. The point which is not consider 

in this paper is whether some classifications of CR-

submanifolds come from variational principles. This will 

be our future outlook.  
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